ISSN: 1899-0967
Polish Journal of Radiology
Established by prof. Zygmunt Grudziński in 1926 Sun
Current issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Contact Instructions for authors Ethical standards and procedures
SCImago Journal & Country Rank
 
1/2022
vol. 87
 
Share:
Share:
more
 
 
Chest radiology
abstract:
Original paper

Deep learning-based automatic detection of tuberculosis disease in chest X-ray images

Eman Showkatian
1
,
Mohammad Salehi
1
,
Hamed Ghaffari
1
,
Reza Reiazi
1, 2
,
Nahid Sadighi
3

1.
Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2.
Department of Radiation Physics, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
3.
Advanced Diagnostic & Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
Pol J Radiol 2022; 87: e118-e124
Online publish date: 2022/02/28
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
To train a convolutional neural network (CNN) model from scratch to automatically detect tuberculosis (TB) from chest X-ray (CXR) images and compare its performance with transfer learning based technique of different pre-trained CNNs.

Material and methods
We used two publicly available datasets of postero-anterior chest radiographs, which are from Montgomery County, Maryland, and Shenzhen, China. A CNN (ConvNet) from scratch was trained to automatically detect TB on chest radiographs. Also, a CNN-based transfer learning approach using five different pre-trained models, including Inception_v3, Xception, ResNet50, VGG19, and VGG16 was utilized for classifying TB and normal cases from CXR images. The performance of models for testing datasets was evaluated using five performances metrics, including accuracy, sensitivity/recall, precision, area under curve (AUC), and F1-score.

Results
All proposed models provided an acceptable accuracy for two-class classification. Our proposed CNN architecture (i.e., ConvNet) achieved 88.0% precision, 87.0% sensitivity, 87.0% F1-score, 87.0% accuracy, and AUC of 87.0%, which was slightly less than the pre-trained models. Among all models, Exception, ResNet50, and VGG16 provided the highest classification performance of automated TB classification with precision, sensitivity, F1-score, and AUC of 91.0%, and 90.0% accuracy.

Conclusions
Our study presents a transfer learning approach with deep CNNs to automatically classify TB and normal cases from the chest radiographs. The classification accuracy, precision, sensitivity, and F1-score for the detection of TB were found to be more than 87.0% for all models used in the study. Exception, ResNet50, and VGG16 models outperformed other deep CNN models for the datasets with image augmentation methods.

keywords:

tuberculosis, machine learning, deep learning, transfer learning




Quick links
© 2022 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.