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Abstract
The purpose of this article was to show basic principles, acquisition, advantages, disadvantages, and clinical appli-
cations of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI). IVIM MRI as a method was 
introduced in the late 1980s, but recently it started attracting more interest thanks to its applications in many fields, 
particularly in oncology and neuroradiology. This imaging technique has been developed with the objective of ob-
taining not only a functional analysis of different organs but also different types of lesions. Among many accessible 
tools in diagnostic imaging, IVIM MRI aroused the interest of many researchers in terms of studying its applicability 
in the evaluation of abdominal organs and diseases. The major conclusion of this article is that IVIM MRI seems to 
be a very auspicious method to investigate the human body, and that nowadays the most promising clinical applica-
tion for IVIM perfusion MRI is oncology. However, due to lack of standardisation of image acquisition and analysis, 
further studies are needed to validate this method in clinical practice. 
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Introduction
The intravoxel incoherent motion (IVIM) diffusion-
weighted (DW) model as a possible imaging technique, 
using multiple b values and bi-exponential fitting for the 
concurrent estimation of the pure molecular water dif-
fusion and microcirculation of blood water in randomly 
oriented capillaries (perfusion) was first introduced in the 
late 1980s by Le Bihan et al. [1]. The idea to use diffusion 
and IVIM magnetic resonance imaging (MRI) to acquire 
perfusion parameter maps was considered revolutionary 
but technically difficult, and, as a result, it was more than 
20 years before the method started being used in clinical 

practice [2]. IVIM reflects the random microscopic mo-
tion of water molecules that occurs in each voxel on MR 
images not only in intra- or extracellular space but also in 
microcirculation of blood [3]. According to IVIM theo-
ry, diffusion and perfusion are affected by several tissue 
characteristics, including the presence of restrictive bar-
riers within tissue, the viscosity of the fluid in which the 
spins are diffusing, and the velocity and fractional volume 
of perfusing spins [4]. Formerly, due to degradation of 
images caused by cardiac, respiratory, and other motion 
artifacts, IVIM imaging was restricted to neuroradiologic 
applications. Nowadays, it is pursued to apply IVIM MRI 
to evaluate almost entire human body. Over the last few 
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years there has been a revival of interest in IVIM MRI and 
its applications in many fields, particularly in oncology [2].

Basic principles and acquisition of intravoxel 
incoherent motion perfusion magnetic 
resonance imaging 

DW magnetic resonance imaging is based on the random 
movement of individual water protons, called Brownian 
motion. The Brownian motion can be described by a se-
ries of molecular jumps [5].

According to Einstein’s equation the diffusion coef-
ficient D depends on the averages of individual displace-
ments between two collisions and the mean molecular 
velocity. In the presence of a magnetic field, random dis-
placement of individual molecules between two gradient 
pulses results in signal attenuation. Initially, the signal at-
tenuation increase was described by a monoexponential 
function: 

S–– = exp (–b × D)S0

where: S is the measured signal intensity, S0 is the signal 
intensity without the influence of diffusion, D (mm2/s) is the 
diffusion coefficient of water, and the b value (s/mm2) can 
be calculated as follows: γ – gyromagnetic ratio (MHz/T), 
G – amplitude of the two diffusion gradient pulses (mT/m), 
δ – duration of the pulses (ms), Δ – time between the two 
pulses (ms) [1]. 

The assumptions of the IVIM model, described for the 
first time by Le Bihan et al. in the late 1980s, are based on the 
translation movements at voxel levels. Microcirculation of 
the blood in the capillary network would mimic a pseudo-
diffusion process [1]. The IVIM effect appears at low b values 
(i.e. b ≤ 200 s/mm2) as a deviation of tissue diffusion signal 
decay (Figure 1). Because the pseudo-diffusion coefficient 
(D*) is one order of magnitude higher than the diffusion co-
efficient D, the exponential decay with the pseudo-diffusion 
coefficient disappears faster. At low b-values, the perfusion 
effect predominantly contributes to the overall diffusion 
signal. At higher values of b, the exponential input with  
D modifies the signal. MRI signal attenuation is the sum of 

the tissue and blood component, taking the shape of biexpo-
nential decay: 

S–– = (l – ƒ) × exp (–b × D) + ƒ × exp (–b × (D* + D))S0

where: S – the signal intensity in the pixel with diffusion 
gradient b, S0 – the signal intensity in the pixel without dif-
fusion gradient, D – the true diffusion as reflected by pure 
molecular diffusion (mm2/s), f – the fractional perfusion 
related to microcirculation, and D* – pseudo-diffusion co-
efficient representing perfusion related diffusion or inco-
herent microcirculation (mm2/s). D* is sometimes referred 
to as ADCfast, while D may be also called ADCslow. 

The IVIM sequence consists of several scans: the first 
without the use of a coding gradient, the next with different 
values of the amplitude and duration of the gradient (different 
b-values). An important part of the IVIM acquisition protocol 
is the choice of b-values (in terms of their number and dis-
tribution), resulting in a different degree of diffusion weight-
ing in the acquired images. The b-values used in IVIM imag-
ing are usually in the range of 0-900 s/mm2. The number of  
b-values ranges from 4 to 16. Number of b-values in the range of  
0-200 s/mm2, where the perfusion effect is dominant, is be-
tween 2 and 12 (Table 1).

There are, however, several important limitations that 
have so far prevented the use of IVIM in routine practice. 
The most important is the lack of a uniform data analysis 
method, which is particularly important because IVIM im-
aging is based on the quantitative analysis of f, D, and D* 
parameters [1,5,6].

Le Bihan proposed acquisition with only three values 
of b that are theoretically sufficient to obtain IVIM results. 
However, more points are needed, especially for the brain 
due to “noise contamination” [5]. For accurately estimat-
ing IVIM parameters at least 10 of the optimal distributed 
b-values should be used [7].

In addition, IVIM parameters, similarly to ADC values, 
are possibly field-strength dependent (1.5T vs. 3.0T) [8].

Strengths and limitations of intravoxel 
incoherent motion magnetic resonance imaging

Understanding of the strengths and limitations of IVIM 
concept may help to appreciate a clinical benefit of this 
method (Table 2).

The most important advantage of IVIM diffusion MR 
imaging is that as a non-contrast perfusion imaging modal-
ity it can be used in situations in which intravenous admin-
istration of contrast agents is not clinically justified, and it 
may serve as an interesting alternative to contrast-enhanced 
perfusion MR imaging in some patients with contraindica-
tions to contrast agents, such as severely compromised renal 
function. Furthermore, IVIM diffusion MR imaging does 
not involve ionising radiation or injection of radioisotopes.

The most important disadvantages include artifacts 
related to cardiac and respiratory motion, artifacts from 

Figure 1. The intravoxel incoherent motion effect
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other bulk flow phenomena, no standardisation of acqui-
sition parameters, and various algorithms used for quan-
titative image analysis. Moreover, the sensitivity of IVIM 
MRI not only varies according to vessel size but also de-
pends on the utilised number and distribution of applied 
b values. Thus, IVIM-derived parameters and maps are 
highly variable and inconsistent. Due to the lack of stan-
dardisation of the IVIM technique, significant variance in 
calculated parameters among studies has been observed 
and no values for normal organs have been established.

Clinical applications in oncology

Abdominal and pelvic organs

Liver 

IVIM was applied to study liver diseases such as liver fi-
brosis, nonalcoholic liver fatty disease, and focal liver le-
sions and to estimate possible treatment response [3,30]. 
With IVIM DWI, Luciani et al. suggested that the diffu-
sion component related to the molecular displacement 
(D) does not differ significantly between cirrhotic and 
healthy livers [27]. 

Yamada et al. found that D was significantly lower 
than ADC, thus suggesting that differences reported in 
ADC between patients with cirrhosis and healthy patients 
were mainly related to the perfusion component of liver 
diffusion. The fact that the pure molecular diffusion coef-
ficient, D, was similar in both the healthy liver group and 

the cirrhotic liver group further indicates that changes in 
liver architecture may be of less importance than changes 
in liver perfusion [28] (Figure 2).

However, the large overlap of D, f, and D* for different 
stages of fibrosis suggests that this technique cannot be 
used to accurately characterise stages of liver fibrosis [27].

In a large number of studies the IVIM technique 
was used for the assessment of focal liver lesions. Liver 
nodules including hepatocellular carcinoma (HCC), hae-
mangioma, focal nodular hyperplasias (FNH), and liver 
metastasis (MET) showed overlap in terms of IVIM pa-
rameters. However, other researchers, like Yamada et al., 
showed the potential of IVIM MRI to differentiate HCC 
from haemangiomas and cysts [28].

Table 1. The b-value used in clinical trials

Paper Year b-values (s/mm2) Number of b-values

Guo [9] 2016 0, 10, 20, 30, 50, 70, 100, 150, 200, 400, 800, 1000 12

Liu [10] 2013 0, 10, 20, 30, 50, 70, 100, 150, 200, 400, 800, 1000 12

Ichikawa [11] 2013 0, 10, 20, 30, 40, 50, 80, 100, 200, 400, 800, 1000 8

Rheinheimer [12] 2012 [0; 50], [0; 100], [0; 150], [0; 200], [0; 300], [0; 400], [0; 600]; [0; 800] 8

Cui [13] 2015 16 b-values from 0 to 800 16

Dyvorne [14] 2013 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 175, 200, 400, 600, 800 16

Federau [15] 2014 0, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 15

Federau [16] 2014 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 16

Döpfert [17] 2011 0, 50, 500, 800

Kakite [18] 2016 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 175, 200, 400, 600, 800 16

Shim [19] 2015 0, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, 500, 700, 900 16

Conklin [20] 2016 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 16

Federau [21] 2016 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 16

Xu [22] 2016 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 400, 800 14

Boss [23] 2016 0, 10, 30, 60, 120, 200, 300, 430, 600, 800 10

Valerio [24] 2016 0, 10, 20, 30, 40, 50, 80, 100, 200, 400, 800 11

Pang [25] 2013 0, 188, 375, 563, 750 5

Bane [26] 2016 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 175, 200, 400, 600, 800 16

Table 2. Advantages and disadvantages of intravoxel incoherent motion 
(IVIM) magnetic resonance imaging

Advantages Disadvantages 

Non-invasive technique Cardiac and respiratory motion artifacts

No use of contrast agents Bulk flow phenomenon artifacts

No need of radioisotopes 
injection

No standardization of acquisition protocols 
and models

No ionizing radiation Variance in calculated parameters among 
studies

Differential sensitivity to vessel size

Lack of standardization of calculation  
of IVIM parametres

No established values for normal organs
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Summarising, IVIM MRI for assessing hepatic lesions 
imposes some difficulties, mainly due to the possible over-
lap between normal and diseased liver tissue, as well as 
between benign and malignant lesions [10].

Pancreas

IVIM imaging has recently gained interest as a method 
to properly recognise and characterise pancreatic lesions. 

Perfusion-related IVIM-derived parameters seem 
especially auspicious for differentiation between normal 
pancreatic parenchyma and solid pancreatic lesions with 
high sensitivity and specificity [29].

According to Re et al. there is a compelling difference 
in the average IVIM perfusion fraction of pancreatic ade-
nocarcinoma compared to healthy pancreatic tissue [31]. 
IVIM MRI emerges as a promising method for charac-
terisation of pancreatic lesions and should therefore be 
further investigated.

Kidney

Over the past two decades, the number of properly dia-
gnosed renal tumours has escalated due to increased 
utilisation of different imaging techniques. Unfortunately, 
preoperative classification of solid renal masses remains 
challenging and defective. In light of the above, in the past 
few years there have been attempts to use IVIM parameters 
to distinguish renal tumour subtypes. Chandarana et al. [32] 
established the differentiation of subtypes of renal cell  
carcinomas using perfusion fraction (f) and tissue diffusi-
vity (D*). Interestingly, the authors demonstrated a signif-
icantly higher f and lower D* in enhancing renal masses 
compared with markedly and poorly enhancing renal 
masses, differentiating these two groups with a higher ac-
curacy than standard ADC values [33]. The combination of 
f and D* allowed the diagnosis of papillary renal cell carci-
noma (RCC) and cystic RCC with 100% accuracy, and clear 
cell RCC and chromophobe RCC with 86.5% accuracy.  
The f was shown to have a good correlation under the curve 

of gadolinium concentration at 60 seconds, which is a mea-
sure of the gadolinium concentration obtained from the 
area under the gadolinium-enhancement signal intensity 
(SI) curve over the first 60 seconds (CIAUC60) after intra-
venous injection of contrast, which potentially enable the 
assessment of tumour vascularity without the need for intra-
venous administration of gadolinium contrast agent [32,34].

According to Ding et al. [35] IVIM-derived parame-
ters, especially the perfusion-related parameters (D* and f), 
showed greater diagnostic accuracy than that of ADC val-
ues in differentiating non-ccRCCs from lipid-poor AMLs.

Prostate

Recent studies have reflected an interest in multiparametric 
MR imaging including diffusion MRI in the detection, stag-
ing, and post-treatment follow-up of prostate cancer [36].

The results of published papers utilising the IVIM 
model are inconsistent in terms of prostate cancer detec-
tion, staging, and treatment response. According to some 
studies, the diagnostic value of this technique compared 
to ADC is rather indigent [17] whereas others report 
showed significant differences between the IVIM param-
eters of benign and malignant tissue [24].

Concluding, there is a visible fluctuation between 
IVIM parameters in cancer and normal prostatic within 
the literature [37], and there is still a need for validation in 
the application of IVIM in the diagnosis of prostate cancer.

Head and neck

Over the last two decades IVIM imaging became a very 
promising technique for differentiation of tumours of the 
head and neck area, due to distinctive f and D. 

IVIM imaging has been successfully applied for dif-
ferentiation not only between benign and malignant sali-
vary gland lesions [38] but also for discrimination of other 
types of tumours in this region. The perfusion-related 
parameter values have been significantly different among 
different types of head and neck tumours, including squa-

Figure 2. Sample quantitative maps of intravoxel incoherent motion (IVIM) parameters (D and f, respectively) created using own plugin for ImageJ software 
for breast cancer liver metastases (arrows). The increase in blood flow/volume occurring in liver metastases can be detected and mapped with IVIM magnetic 
resonance imaging 
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mous cell carcinoma, benign (pleomorphic adenomas, 
Warthin tumour) and malignant salivary gland tumours, 
lymphomas, and schwannomas [39].

Additionally, low pre-treatment D and f values favour 
good response to treatment, whereas an increase in D dur-
ing treatment confirms good response to therapy [40]. 
However, the role of IVIM MRI in characterisation of 
lymph nodes remains controversial because IVIM param-
eters have been shown to be inappropriate for differen-
tiation between metastatic and non-metastatic head and 
neck lymph nodes [41]. On the other hand, some stud-
ies indicate that IVIM DWI is feasible in the diagnosis  
of lymph node metastasis, which demonstrate decreased 
D (due to increased nuclear-to-cytoplasmic ratio) and 
increased D* (due to new blood vessel formation and in-
creased parenchymal perfusion) [42].

Furthermore, pre-treatment and mid-treatment IVIM- 
DWI led to the conclusion that there is a potential for  
prediction of chemo-radiotherapy response of cervical 
lymph nodes in head and neck squamous cell carcinoma 
patients [43].

What is more, in patients with head and neck squa-
mous cell carcinoma (HNSCC) due to locoregional fail-
ure, high initial f in lymph nodes may be considered as  
an indicator of poor treatment response [44].

IVIM MRI (perfusion-related coefficients) appears 
promising for noninvasive evaluation of early changes of 
irradiated major salivary glands during radiotherapy [45]. 
Moreover, it is reasonable and advantageous for predict-
ing and assessing initial responses of human papilloma 
virus and oropharyngeal squamous cell carcinoma SCC 
to chemoradiotherapy [46]. 

Reported artifacts, specific for this area and related to 
the presence of bones and air-filled structures, are addi-
tional problem in the evaluation of the head and neck with 
MRI. Moreover, specific artifacts related to jaw movements, 
swallowing, speaking, coughing, and respiration might ad-
ditionally degrade acquired images. 

Breast

In recent years, with the improved MR hardware, a renewed 
interest in IVIM has been shown and the applications of 
IVIM to breast lesions have been reported [47].

According to some authors, IVIM has been recognised 
as a very promising method for the diagnosis of breast can-
cer [48,51,52].

Compared to DWI with monoexponential fit, IVIM 
provides separate quantitative measurement for cellularity 
and vascularity. IVIM can be used to differentiate benign 
and malignant lesions with high specificity. This method 
can increase the diagnostic sensitivity and might play 
a role in screening breast MRI in high-risk women [47].

What is more, quantification of perfusion fraction, tis-
sue diffusivity, and pseudodiffusivity provides noninvasive 
sensitivity to microenvironment properties without need 

of contrast agent. These applications have the potential to 
improve the specificity of breast MRI. 

According to Sigmund et al., further work in a larg-
er patient population is needed to validate the ability of 
IVIM for the diagnosis, differentiation, monitoring, and 
management of cancerous lesions in the breast and verify 
its role as a possible surrogate marker of the biological 
properties of the tumour [49].

Other lymph nodes

Some recent studies have shown that particular IVIM pa-
rameters, such as the ADC and diffusion coefficient (D), 
are significantly different between patients with meta-
static and non-metastatic lung cancer that has spread to  
the lymph nodes, therefore possibly facilitating discri-
mination of benign and malignant mediastinal lymph 
nodes [53].

Furthermore, an IVIM sequence may also be help-
ful in diagnosing metastatic lymph nodes of rectal carci-
noma. According to Qui, average D and ADC values are 
more sensitive than f and D* values for this purpose [54]. 
As reported by Yu et al. in patients with rectal cancer, 
metastatic mesorectal lymph nodes exhibit lower D and 
D* values, compared to non-metastatic lymph nodes. 
The authors concluded that IVIM DWI may be helpful in 
identifying mesorectal nodal involvement in rectal cancer 
patients [55].

Clinical applications in neuroradiology
There is little doubt that IVIM imaging has potential for 
evaluation of brain ischaemia. Wirestam et al., who utilised 
IVIM for the assessment of the stroke by IVIM, reported 
that the perfusion fraction was reduced in areas affected 
by ischaemia in comparison to the respective contralateral 
region [56].

In acute stroke, a significant decrease in f was mea-
sured in the infarct core compared with the contralateral 
hemisphere in three independent studies [57-59].

Furthermore, it has been found that decreased IVIM 
perfusion fraction f and blood flow-related parameter D* 
might correspond with proximal artery vasospasm de-
velopment after cerebral aneurysm rupture and delayed 
cerebral ischaemia [60].

What is more, IVIM may be a valid and favourable 
method for significant measurement of brain perfusion 
without intravenous administration of contrast mate-
rial. According to some studies, IVIM perfusion para-
meters are highly reactive to hyperoxygenation-induced 
vasoconstriction and hypercapnia-induced vasodilata-
tion [61].

Another study showed that IVIM can be used for  
the assessment of cerebral small vessel disease and its 
complications including lacunar stroke, leukoaraiosis, or 
even vascular dementia [62].
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Brain tumours
The most common malignant brain tumours are gliomas, 
which originate from glial cells (astrocytes, oligodendro-
cytes and ependymocytes). Due to the high mortality 
rate, early diagnosis and correct assessment of the grade 
of a glioma are crucial for the planning of a therapeutic 
strategy and establishing a prognosis [62,63].

Researchers reported that both D* and f could be 
used to differentiate gliomas because these parameters 
were higher in high-grade gliomas (HGG; WHO: III-IV) 
in comparison to low-grade gliomas (LGG; WHO: I-II) 
[16,64]. In subsequent reports the authors concluded that 
IVIM-derived metrics characterising both perfusion (D*, f) 
and diffusion (D) have been assessed as promising imaging 
biomarkers in preoperative differentiation of glioma grades. 
The f times D* value demonstrated the best diagnostic per-
formance in grading gliomas compared with other para-
meters and was the only parameter showing a significant 
difference between grade III and grade IV [65]. Addition-
ally, according to some scientists IVIM metrics could be 
a potential biomarker for survival in patients with glioblas-
tomas as it has been found out that f and D* measured in 
contrast-enhancing regions correlate well with response to 
therapy and survival [66].

It is also worth noticing that there are studies show-
ing that IVIM may be used to differentiate between glio-
blastoma and primary central nervous system lymphoma 
(PCNSL) [19,67,68]. According to authors mean maxi-

mum f is significantly higher in the glioblastoma group 
than in the atypical primary central nervous system lym-
phoma that often mimics glioblastoma [67,68].

The most recent studies showed that the f-value can be 
used as a noninvasive quantitative imaging measure to di-
rectly assess the vascular volume fraction in brain tumours. 
Moreover, one study showed an obvious correlation with 
the histological vascular density in meningiomas [69].

Moreover, IVIM parameters have been used to monitor 
the tumours treated with antiangiogenic and vascular target 
agents that have been recently considered an alternative or 
complementary therapy to conventional cancer treatments 
[45,62,70-73].

According to some authors, IVIM may be used to dif-
ferentiate radiation necrosis from tumour progression in 
brain metastases that are treated with stereotactic radio-
therapy (radiosurgery). The f-value was found to be low 
in the region of the radiation necrosis, whereas tumour 
recurrence was more heterogeneous and showed higher 
values [74].

Other clinical applications
IVIM MR imaging might also be used as a diagnostic tool 
in gynaecology, orthopaedics, dermatology, and ophthal-
mology. Presentation of these applications is beyond the 
scope of this paper; however, some examples of various 
clinical applications according to the PubMed database 
are presented in Table 3.

Table 3. Clinical applications of intravoxel incoherent motion magnetic resonance imaging

Neuroradiology Oncology Other

Cerebral infarction Brain tumors Renal function, e.g. renal fibrosis, early changes  
in diabetic kidneys

Brain perfusion Primary and non-metastatic head and neck tumors Cardiac imaging

Pulsatility of the brain’s 
microvasculature

Lymph nodal metastasis Dermatomyositis imaging

Pancreatic lesions Human Achilles tendon imaging

Prostate lesions Lactating breast lesion imaging

Breast tumors Orbital lesions imaging

Liver lesions Vertebral bone marrow imaging

Renal lesions Thyroid benign and malignant nodule differentiation

Cervical cancer Tissue characterization of the uterine fibroids

Soft tissue tumors Ischemic optic neuropathy

Diagnosis of pediatric solid abdominal tumors Temporomandibular joint disorder imaging

Monitoring treatment efficacy of chemo- or radiotherapy, 
effectiveness of antiangiogenic drugs and vascular targeting agents

Knee joint in children with juvenile idiopathic 
arthritis imaging

Invasive fungal infection in the lung treatment 
response imaging

Parotid gland imaging in patients with Sjögren 
diasease

Placental perfusion imaging
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Conclusions
The IVIM method is a DW MRI technique incorporating 
low b-values (< 200 s/mm2) for the estimation of perfusion 
parameters, which offers many advantages in comparison to 
the conventionally used DWI technique. It is a noninvasive 
substitute for the measurement of perfusion that does not re-
quire intravenous injection of exogenous contrast agents, such 

as gadolinium, and can be a great source of information on 
perfusion and diffusion simultaneously [62].

Today, the most promising clinical application for 
IVIM perfusion MRI is oncology. The graphs demonstrate 
the number of articles on implementation of IVIM MRI 
in oncology (Figure 3), compared to the total number of 
articles about this technique published between 1986 and 
2018 (Figure 4).

Figure 3. Number of articles about intravoxel incoherent motion magnetic 
resonance imaging 1987-2018 (PubMed) 

Figure 4. Number of articles about intravoxel incoherent motion magnetic 
resonance imaging in oncology 1986-2018 (PubMed) 
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Table 4. Characteristics of the included studies 

Autor Lesion Parameter Parameter value Sensitivity Specificity Accuracy AUC P value

Chandarana 
et al. [32]

Clear cell RCC ADC × 10-3   mm2/s 2.2 ± 0.4 92.9% 58.3% 76.9% 0.67

D × 10-3 mm2/s 1.8 ± 0.6 86% 62.5% 75.0% 0.68

f 0.25 ± 0.05 100% 62.5% 82.7% 0.74

D* × 10-3 mm2/s 19 ± 13.5 0,53

Cystic RCC and papillary RCC f < 0.16 100%

Clear cell RCC and 
chromophobe RCC

f > 0.16 100%

Ding et al. [35] Papillary RCC and 
chromophobe RCC  
vs. fat poor AML

ADC > 1.39 39.1% 100% 60.0% 0.634 0.167

D > 0.97 56.5% 100% 71.4% 0.757 0.002

D* ≤ 28.03 87.0% 75% 82.9% 0.822 < 0.001

f ≤ 13.61 43.5% 100% 62.9% 0.783 < 0.001

Sumi et al. [38] Normal parotid gland D, × 10-3 mm2/s 0.765 ± 0.138

f 0.148 ± 0.043

D*, × 10-3 mm2/s 41.68 ± 21.91

Normal submandibular gland D, × 10-3 mm2/s 0.999 ± 0.154

f 0.133 ± 0.037

D*, × 10-3 mm2/s 54.16 ± 23.24

Malignant salivary gland 
tumor

D, × 10-3 mm2/s 0.96 ± 0.22

f 0.103 ± 0.0050

D*, × 10-3 mm2/s 21.99 ± 19.01

Pleomorphic adenoma D, × 10-3 mm2/s 1.38 ± 0.30

f 0.066 ± 0.031

D*, × 10-3 mm2/s 10.53 ± 3.48
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Autor Lesion Parameter Parameter value Sensitivity Specificity Accuracy AUC P value

Warthin tumor D, × 10-3 mm2/s 0.61 ± 0.11

f 0.156 ± 0.039

D*, × 10-3 mm2/s 42.64 ± 20.17

Discriminating pleomorphic 
adenomas from Warthin tumors

D, × 10-3 mm2/s ≥ 1.1 100% 100% 100%

f ≤ 0.1 83% 100% 90%

D*, × 10-3 mm2/s ≤ 23 100% 100% 100%

Discriminating malignant 
salivary gland tumors from 
benign ones 

D, × 10-3 mm2/s 0.8 < D < 1.1 64% 100% 87%

D*, × 10-3 mm2/s 10 ≤ D*≤ 23 73% 65% 68%

Combined D and D*, 
× 10-3 mm2/s

0.8 < D < 1.1, D ≤ 0,8  
and D* ≤ 23, or 1.1 ≤ D < 1.4 

and D* ≥ 12

100% 100% 100%

Sumi et al. [39] Lymphomas PP perfusion-
related parameter

0.09 ± 0.04

D, × 10-3 mm2/s 0.47 ± 0.07

Malignant salivary gland tumors PP 0.22 ± 0.07

D, × 10-3 mm2/s 1.03 ± 0.16

Squamous cell carcinomas PP 0.15 ± 0.04

D, × 10-3 mm2/s 0.82 ± 0.17

Pleomorphic adenomas PP 0.13 ± 0.02

D, × 10-3 mm2/s 1.44 ± 0.39

Schwannomas PP 0.23 ± 0.08

D, × 10-3 mm2/s 1.26 ± 0.20

Warthin tumors PP 0.19 ± 0.04

D, × 10-3 mm2/s 0.73 ± 0.22

Liang L et AL.  
(42)

Malignant lymph nodes vs 
benign lymph nodes

D*, × 10-3 mm2/s 120.89 ± 26.94  
vs. 68.78 ± 17.72

0.0001

D, × 10-3 mm2/s 0.57 ± 0.12 vs. 0.74 ± 0.21 0.0001

f (%) 0.20 ± 0.02 vs. 0.32 ± 0.05 0.0001

ADC, × 10-3 mm2/s 1.08 ± 0.26 vs. 1.25 ± 0.19 0.035

Federau et al. 
[57]

Acute ischemic stroke - brain 
infarct core vs. contralateral side

f 0.026 ± 0.019  
vs. 0.056 ± 0.025

2.2 × 10−6

D, mm2/s 3.9 ± 0.79 × 10-4  

vs. 7.5 ± 0.86 × 10-4

1.3 × 10-20

Suo et al. [58] Ischemic stroke vs contralateral 
hemisphere

ADC, × 10-3 mm2/s 0.43 ± 0.10 vs. 0.73 ± 0.07 < 0.001

D, × 10-3 mm2/s 0.42 ± 0.10 vs. 0.72 ± 0.07 < 0.001

D*, × 10-3 mm2/s 10.20 ± 4.17 vs. 10.87 ± 4.75 0.218

f (%) 4.29 ± 2.01 vs. 7.97 ± 2.03 < 0.001

fD*, × 10-3 mm2/s 0.49± 0.27 vs. 0.94 ± 0.42 < 0.001

Togao et al. 
[64]

Differentiating high-grade 
gliomas from low-grade gliomas 

D, × 10-3 mm2/s ≤ 1.25 100% 56.2% 0.78

ADC, × 10-3 mm2/s ≤ 1.29 96.6% 50.0% 0.73

D*, × 10-3 mm2/s ≥ 8.43 75.9% 50.0% 0.60

f (%) ≥ 7.7 96.6% 81.2% 0.95

Suh et al. [67] Glioblastoma group vs. 
atypical primary central 
nervous system lymphoma

fmax reader 1: 0.101 ± 0.016  
vs. 0.021 ± 0.010

reader 2: 0.107 ± 0.024  
vs. 0.027 ± 0.015

reader 1: 
89.5%

reader 2:
84.2%

reader 1:
95.1%

reader 2:
95.1%

reader 1:
< 0.001
reader 2:
< 0.001

Table 4. Cont.
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Autor Lesion Parameter Parameter value Sensitivity Specificity Accuracy AUC P value

Liu et al. [10] Breast malignant tumor ADC, × 10-3   mm2/s 0.95 (0.83, 1.06) 93% 90%

D, × 10-3 mm2/s 0.85 (0.77, 0.98) 90% 93%

f 10.34 (7.68, 11.88) 88% 54%

D*,× 10-3 mm2/s 94.71 (70.33, 113.23) 85% 41%

Breast benign lesions ADC, × 10-3   mm2/s 1.39 (1.32, 1.50) 95% 90%

D, × 10-3 mm2/s 1.99 (1.77, 2.03) 92% 96%

f 6.83 (4.72, 10.33) 89% 56%

D*, × 10-3 mm2/s 107.49 (83.20, 131.19) 82% 44%

Breast simple cyst ADC, × 10-3   mm2/s 1.96 (1.73, 2.18)

D, × 10-3 mm2/s 1.35 (1.26, 1.44)

f 1.69 (0.70, 3.47)

D*, × 10-3 mm2/s 99.33 (87.04, 155.69)

Valerio et al. 
[24]

Prostate cancer ADC, × 10-3   mm2/s 0.76 ± 0.27

D, × 10-3 mm2/s 0.99 ± 0.38

f 9.35 ± 5.97

D*, × 10-3 mm2/s 15.56  ±12.91

Yamada et al. 
[28]

HCC ADC, × 10-3   mm2/s 1.10 ± 0.18

D, × 10-3 mm2/s 1.02 ±10.17

f 0.15 ±10.07

D*, × 10-3 mm2/s

Liver metastasis ADC, × 10-3   mm2/s 1.26 ± 0.25

D, × 10-3 mm2/s 1.16 ± 0.18

f 0.22 ±  0.09

D*, × 10-3 mm2/s

Liver hemangioma ADC, × 10-3   mm2/s 1.56 ± 0.22

D, × 10-3 mm2/s 1.31 ± 0.21

f 0.35 ± 0.10

D*, × 10-3 mm2/s

Liver cyst ADC, × 10-3   mm2/s 3.01 ± 0.28

D, × 10-3 mm2/s 3.03 ±0.22

f 0.00 ± 0.01

De Robertis et 
al. [29]

Pancreatic cancer ADC, × 10-3   mm2/s 1.41 (1.02-1.73)

D, × 10-3 mm2/s 1.42 (0.87-1.97) 77% 88% 0.821 

f 5.82 (2.12-18.84) 91% 100% 0.989 

D*, × 10-3 mm2/s 10.23 (1.79-57.85) 94% 96% 0.952 

Neuroendocrine neoplasms ADC, × 10-3   mm2/s 1.28 (1.01-1.89)

D, × 10-3 mm2/s 1.2 (0.54-1.56)

f 27.61 (3.22–80.83)

D*, × 10-3 mm2/s 28.9 (12.16-73.08)

Autoimmune pancreatitis ADC, × 10-3   mm2/s 1.24 (0.94-1.64)

D, × 10-3 mm2/s 1.16 (0.84-1.76)

f 9.87 (4.18-11.60) 100% 100% 1.000 

D*, × 10-3 mm2/s 10.62 (7.6-15.15) 100% 98% 0.988 
ADC - apparent diffusion coefficient; D - diffusion coefficient; D* - pseudodiffusion coefficient; f - perfusion fraction; AUC - area under curve; RCC - renal cell carcinoma; AML- angiomyolipoma; 
HCC - hepatocellular carcinoma; PP - perfusion-related parameter. 

Table 4. Cont.
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Recently, there has been greater interest in using the 
IVIM technique to examine organ function and to evalu-
ate treatment response. There is growing evidence that the 
additional functional information related to tumour angio-
genesis may assist diagnosis and could have prognostic 
value in oncology patients.

Applications of IVIM may include detection and chara-
cterisation of widespread disease, such as both primary and 
metastatic tumours.

Published studies indicate that, in the near future, IVIM 
may become an important diagnostic imaging modality to 
evaluate brain, head and neck, salivary gland, pancreatic, 

prostate, breast, liver, and renal lesions, as well as lymph 
node metastasis [2].

However, the main problem with implementation of 
IVIM for routine MR imaging is lack of standardisation of 
both image acquisition and analysis, resulting in significant 
variance in calculated parameters among studies [75,76] 
(Table 4). Thus, this technique still needs to be refined in 
terms of acquisition, analysis, and application. 
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