ISSN: 1899-0967
Polish Journal of Radiology
Established by prof. Zygmunt Grudziński in 1926 Sun
Current issue Archive About the journal Editorial board Abstracting and indexing Contact Instructions for authors
SCImago Journal & Country Rank



2018
vol. 83
 
Share:
Share:
more
 
 
abstract:
Original paper

Magnetic resonance spectroscopy of the frontal region in patients with metabolic syndrome: correlation with anthropometric measurement

Zizi Moustafa Hassan El-Mewafy, Ahmed Abdel Khalek Abdel Razek, Mervat Mohamed El-Eshmawy, Nader Ramadan Abo El-Eneen, Azaa Abdel Baky EL-Biaomy

© Pol J Radiol 2018; 83: e215-e219
Online publish date: 2018/05/15
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Purpose
to demonstrate 1H-MR spectroscopy of the frontal region in patients with metabolic syndrome and to correlate the metabolic ratios with anthropometric measurement.

Material and methods
A prospective study was conducted upon 20 patients with metabolic syndrome (10 male, 10 female; mean age 52 years) and 20 age- and sex-matched volunteers. Patients were mild-moderate (n = 14) and marked and morbid obesity (n = 6). Patients and volunteers underwent 1H-MR spectroscopy of the frontal region. The Ch/Cr and NAA/Cr ratio were calculated and correlated with anthropometric measurement.

Results
The Cho/Cr and NAA/Cr of patients with Mets (1.03 ± 0.08 and 1.62 ± 0.08) were significantly different (p = 0.001) to those of volunteers (0.78 ± 0 and 1.71 ± 0.61, respectively). The Cho/Cr and NAA/Cr cutoffs used to differentiate patients from volunteers were 0.89 and 1.77 with areas under the curve of 0.992 and 0.867 and accuracy of 97% and 93%, respectively. There was a significant difference in Cho/Cr and NAA/Cr between patients with marked-morbid obesity and moderate-mild obesity (p = 0.001 respectively).

Conclusions
We concluded that NAA/Cr and Cho/Cr ratios of the frontal region can differentiate patients with metabolic syndrome from volunteers and are well correlated with the anthropometric measurement.

keywords:

MR spectroscopy, metabolic syndrome

references:
Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am 2014; 43: 1-23.
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415-1428.
Oda E. Metabolic syndrome: its history, mechanisms, and limitations. Acta Diabet 2012; 49: 89-95.
Moran C, Beare R, Phan TG, et al. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 2015; 85: 1123-1130.
Yu Y, Sun Q, Yan LF, et al. Multimodal MRI for early diabetic mild cognitive impairment: study protocol of a prospective diagnostic trial. BMC Med Imaging 2016; 16: 50.
Tan X, Fang P, An J, et al. Micro-structural white matter abnormalities in type 2 diabetic patients: a DTI study using TBSS analysis. Neuroradiology 2016; 58: 1209-1216.
deBresser J, Reijmer YD, van den Berg E, et al. Microvascular determinants of cognitive decline and brain volume change in elderly patients with type 2 diabetes. Dement Geriatr Cogn Disord 2010; 30: 381-386.
Sims RC, Katzel LI, Lefkowitz DM, et al. Association of fasting glucose with subclinical cerebrovascular disease in older adults without Type 2 diabetes. Diabet Med 2014; 31: 691-698.
Chen Y, Liu Z, Zhang J, et al. Selectively Disrupted Functional Connectivity Networks in Type 2 Diabetes Mellitus. Front Aging Neurosci 2015; 7: 233.
Razek AA, Poptani H. MR spectroscopy of head and neck cancer. Eur J Radiol 2013; 82: 982-989.
Razek AA, Nada N. Correlation of Choline/Creatine and Apparent Diffusion Coefficient values with the prognostic parameters of Head and Neck Squamous Cell Carcinoma. NMR Biomed 2016; 29: 483-489.
Abdel Razek A, Abdalla A, Abdel Gaber N, et al. Proton MR Spectroscopy of the brain in children with neuronopathic Gaucher’s disease. Eur Radiol 2013; 23: 3005-3011.
Razek AA, Abdalla A, Ezzat A, et al. Minimal hepatic encephalopathy in children with liver cirrhosis: diffusion-weighted MR imaging and proton MR spectroscopy of the brain. Neuroradiology 2014; 56: 885-891.
Sinha S, Ekka M, Sharma U, et al. Assessment of changes in brain metabolites in Indian patients with type-2 diabetes mellitus using proton magnetic resonance spectroscopy. BMC Res Notes 2014; 7: 41.
Tiehuis A, van der Meer F, Mali W, et al. MR spectroscopy of cerebral white matter in type 2 diabetes; no association with clinical variables and cognitive performance. Neuroradiology 2010; 52: 155-1561.
Modi S, Bhattacharya M, Sekhri T, et al. Assessment of the metabolic profile in Type 2 diabetes mellitus and hypothyroidism through proton MR spectroscopy. Magn Reson Imaging 2008; 26: 420-425.
Sahin I, Alkan A, Keskin L, et al. Evaluation of in vivo cerebral metabolism on proton magnetic resonance spectroscopy in patients with impaired glucose tolerance and type 2 diabetes mellitus. J Diabet Comp 2008; 22: 254-260.
Ajilore O, Haroon E, Kumaran S, et al. Measurement of brain metabolites in patients with type 2 diabetes and major depression using proton magnetic resonance spectroscopy. Neuropsychopharmacology 2007; 32: 1224-1231.
http://www.idf.org/webdata/docs/Metac_syndrome_def.pdf. Accessed: 23 October 2013.
Abdel Razek AA, Elkammary S, Elmorsy AS, et al. Characterization of mediastinal lymphadenopathy with diffusion-weighted imaging. Magn Reson Imaging 2011; 29: 167-172.
Abdel Razek A, Samir S, El-Said A. Role of diffusion-weighted MR imaging in differentiation of Graves’ disease from painless thyroiditis. Polish J Radiol 2017; 30: 230-234.
Abdel Razek A, Mazroa J, Baz H. Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev 2014; 36: 28-34.
Abdel Razek A, Al-Adlany M, Alhadidy A, et al. Diffusion tensor imaging of the renal cortex in diabetic patients: correlation with urinary and serum biomarkers. Abdom Radiol 2017; 42: 1493-1500.
El-Serougy L, Abdel Razek AA, Ezzat A, et al. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 2016; 29: 400-407.
Abdel Razek AA, Mousa A, Farouk A, et al. Assessment of semiquantitative parameters of dynamic contrast-Enhanced Perfusion MR Imaging in Differentiation of Subtypes of Renal Cell Carcinoma. Polish J Radiol 2016; 81: 90-94.
Abdel Razek AA, Gaballa G. Role of perfusion magnetic resonance imaging in cervical lymphadenopathy. J Comput Assist Tomogr 2011; 35: 21-25.
Razek AA, Elsorogy LG, Soliman NY, et al. Dynamic susceptibility contrast perfusion MR imaging in distinguishing malignant from benign head and neck tumors: a pilot study. Eur J Radiol 2011; 77: 73-79.
Abdel Razek AA, Elkhamary S, Al-Mesfer S, et al. Correlation of apparent diffusion coefficient at 3T with prognostic parameters of retinoblastoma. AJNR Am J Neuroradiol 2012; 33: 944-948.
Abdel Razek AA, Gaballa G, Denewer A, et al. Diffusion weighted MR imaging of the breast. Acad Radiol 2010; 17: 382-386.
Razek AA, Sieza S, Maha B. Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol 2009; 36: 206-211.
Razek AA. Diffusion magnetic resonance imaging of chest tumors. Cancer Imaging 2012; 12: 452-463.
 
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe