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Abstract
Purpose: A pandemic disease elicited by the SARS-CoV-2 virus has become a serious health issue due to infecting 
millions of people all over the world. Recent publications prove that artificial intelligence (AI) can be used for medical 
diagnosis purposes, including interpretation of X-ray images. X-ray scanning is relatively cheap, and scan processing 
is not computationally demanding. 

Material and methods: In our experiment a baseline transfer learning schema of processing of lung X-ray images, 
including augmentation, in order to detect COVID-19 symptoms was implemented. Seven different scenarios of 
augmentation were proposed. The model was trained on a dataset consisting of more than 30,000 X-ray images. 

Results: The obtained model was evaluated using real images from a Polish hospital, with the use of standard metrics, 
and it achieved accuracy = 0.9839, precision = 0.9697, recall = 1.0000, and F1-score = 0.9846. 

Conclusions: Our experiment proved that augmentations and masking could be important steps of data pre-processing 
and could contribute to improvement of the evaluation metrics. Because medical professionals often tend to lack 
confidence in AI-based tools, we have designed the proposed model so that its results would be explainable and could 
play a supporting role for radiology specialists in their work.
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Introduction
A pandemic disease elicited by the virus SARS-CoV-2 
has caused serious (health, mental, social, etc.) issues by 
infecting millions of people all over the world. It was re-
ported that more than 200 countries have been affected 
by the coronavirus pandemic. As well as causing disease 
symptoms (e.g. fever, fatigue, cough, and respiratory dis-
tress), the COVID-19 pandemic caused a failure in health 
services due to the lack of medical staff or the overloading 
of entire healthcare systems. However, recent publications 

suggest that artificial intelligence (AI) could be used to 
aid in various aspects of pandemic crises, including medi-
cal diagnosis, novel drug development, patient treatment, 
epidemiology, and socioeconomics [1].

Even though the ‘golden standard’ for COVID-19 dia-
gnosis is the reverse transcription-polymerase chain reac-
tion (RT-PCR) test, radiological screening, such as lung 
computed tomography (CT) scans or lung X-ray, can help 
to monitor the disease and quickly isolate infected people. 
However, the increased number of COVID-19 patients 
and the need for manual analysis of chest X-ray imaging 
imposed a significant burden on medical staff. Therefore, 
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intelligent technologies could greatly improve the disease’s 
diagnosis procedures. X-ray analysis may be reported as less 
accurate than CT scans, but at the same time X-ray scanning 
is less expensive and data processing is less computationally 
demanding. An automated system of COVID-19 diagnos-
tics based on X-ray scans could work continuously, analys-
ing input data relatively fast and without breaks. As a result, 
such a system could significantly accelerate the diagnostic 
process for COVID-19 patients and keep it cost effective.

The aims of this paper were as follows: 1) to implement 
a baseline transfer learning schema of processing the lung 
X-ray images in order to detect COVID-19 symptoms;  
2) to test different scenarios of augmentation and evalu-
ate them in terms of obtained improvements in evaluation 
metrics, such as accuracy, precision, recall, and F1-score;  
3) to use augmentation scenarios in 2 modes: with and 
without segmentation, and to assess the influence of seg-
mentation on the model effectiveness; 4) to validate the 
proposed system on a dataset containing real data obtained 
from the hospital (COVID-19 or healthy lung X-ray images 
confirmed with a RT-PCR test); 5) to compare the obtained 
results to other, state-of-the-art analytical algorithms.

In this research we focused on the influence of aug-
mentation on the performance of lung X-ray classification. 
Augmentation can help in overcoming the limitation of 
data samples in particular image datasets. Khalifa et al. [2] 
described the following advantages of augmentation:  
1) it can be an inexpensive way of gathering more data 
when compared with regular data collection with its label 
annotation; 2) it can be very accurate because it is origi-
nally generated from ground-truth data; 3) it can be con-
trollable, so it is possible to generate well balanced data; 
4) it can help in overcoming the overfitting problem; and 
5) it can provide better testing accuracy.

Material and methods
In this study, we utilized a dataset that can be found on 
the website https://www.kaggle.com/datasets/andyczhao/

covidx-cxr2. The example of use and detailed description 
were provided by Wang et al. [3]. The dataset included im-
ages obtained from various sources such as the GitHub re-
positories and the Open Radiology Database (RICORD). 
All images were anonymized. The images were divided 
into 2 categories: COVID-19 and normal, and all of them 
were posteroanterior (PA) chest X-rays. A total of 30,386 
images were used in the experiment. The dataset can be 
treated as balanced because there were ~16,000 samples 
in the COVID-19-positive class and ~14,000 samples in 
the COVID-19-negative class.

Some examples of images from the dataset and the 
general overview of the proposed method are presented 
in Figure 1. It shows the following steps of the proposed 
pipeline: augmentation, pre-processing (normalization and 
masking by ResNet34), and classification using ResNet18’s  
pretrained convolutional neural network. Finally, the 
proposed method gives the answer of “true” for the  
COVID-19-positive sample and “false” for the healthy 
sample. Each step of the process is described in detail in  
the paragraphs below. All analyses were carried out with the 
use of Python 3.7 and the PyTorch platform. It is worth not-
ing that in the pre-processing part the masking is marked 
with a dashed line; this is to emphasize that we performed 
some experiments with and some without masking.

Data augmentation and pre-processing

We proposed a baseline system to determine the impact 
of the chosen data augmentation method on the final clas-
sification result. Data augmentation is an important step in 
image analysis because it allows for an increase in the size 
of the dataset; thus, it could possibly contribute to the im-
provement of the model evaluation metrics. The augmen-
tation can also improve the model’s ability to generalize. 
In our study, we evaluated 7 different data augmentation 
approaches:
•	 None – no augmentation methods were used in the 

baseline approach.

Figure 1. Pipeline of the proposed architecture: images from the dataset, 7 options of augmentation, pre-processing (resizing and masking) and classification 
performed by ResNet18, and finally the result: positive or negative
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•	 Group 1 – manipulating the colour of the image; this 
group of methods consists of:
–  RandomGamma – applying random gamma correc-

tion to the image to change the overall brightness.
–  ColorJitter – applying random changes in brightness, 

contrast, saturation, and hue to the image.
–  ToGray – converting the image to greyscale.

•	 Group 2 – manipulating the contrast and brightness of 
the image; this group of methods consists of:
–  CLAHE (Contrast Limited Adaptive Histogram 

Equalization) – adjusting the image intensity to im-
prove the contrast and visibility of the lung structures.

–  RandomBrightness – adjusting the brightness of an 
image by a random amount.

–  RandomContrast – adjusting the contrast of an image 
by a random amount.

–  Sharpen – sharpening the image to increase its con-
trast and highlight details.

•	 Group 3 – this group of methods adds noises to the im-
age. All used parameters of the noises were set experi-
mentally:
–  MotionBlur – adding blur to the image to simulate 

motion blur; the blur limit was set to 5.
–  MedianBlur – blurring the image by replacing each 

pixel’s value with the median value of the pixels in its 
neighbourhood; the blur limit was set to 3.

–  Blur – blurring the image using a box filter; the blur 
limit was set to 4.

–  GaussianBlur – blurring the image using a Gaussian 
filter with kernel (3,7);

•	 Group 4 – this group of methods applied geometric 
transformations to the image:

–  ElasticTransform – applying a non-rigid deformation 
to the image using displacement fields.

–  OpticalDistortion – applying distortion to the image 
to simulate lens distortion.

–  GridDistortion – applying a grid distortion to the im-
age, simulating distortions that can occur in images 
captured through a grid or mesh.

•	 Group 5 – rotating an image by a fixed angle to simulate 
different orientations of the image; images were rotated 
by angle in range $ < –3,3 > $ expressed in degrees.
–  Mixed – a mix of all mentioned augmentation methods.

All the used methods come from the Albumentations 
library [4]. Models for each of the 7 groups were trained 
and validated independently. At each epoch, one augmen-
tation was randomly (with equal probability) selected 
from among those available in the group. Only the train-
ing data were augmented. Examples of images created  
by augmentation are presented in Figure 2. In the fore-
mentioned Figure 2, baseline images with their modifi-
cations from selected group (G1 – colour modification,  
G2 – contrast and brightness modification, G4 – geometric 
operations, G5 – rotations) are given. As can be seen, the 
differences between the baseline and the modified image 
are sometimes difficult to observe with the naked eye. But, 
for the computer vision and understanding they are suf-
ficiently different.

In view of studying the impact of augmentation me-
thods, we decided to limit pre-processing methods to resize 
and apply masks with use of the pretrained segmentation 
model ResNet34 [5]. However, to evaluate the influence of 
masking on the classification metrics, we decided to run all 
experiments twice: with and without segmentation.

Figure 2. Examples of augmentation techniques. A) Baseline and modified images G1. B) Baseline and modified images G2. C) Baseline and modified images G4. D) Baseline and 
modified images G5

A B

C D
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ML-based methods

The CNN was implemented for classification. To focus 
on the augmentation point of the research, a pretrained 
CNN was used – ResNet18 [5]. ResNet is a type of CNN, 
the popularity of which continuously increases, also in 
COVID-19 detection from X-rays [3,6-8]. The whole da-
taset (14,191 images representing healthy class and 16,194 
images representing COVID-19 class) were shuffled and 
divided into training and validation subsets. Some more 
detailed experimentally set learning parameters were as 
follows:
•	 optimizer – SGD (stochastic gradient descent);
•	 loss function – cross entropy;
•	 number of epochs – 200;
•	 batch size – 16;
•	 early stopping rounds – 10.    

Method evaluation

The method was evaluated on a pre-prepared hospital 
dataset available at https://github.com/UTP-WTIiE/
Xray_data.git and previously described and used in [9]. 
Images from this dataset are anonymized, realistic data. 
They were obtained from Antoni Jurasz University Hos-
pital No. 1 in Bydgoszcz, Department of Radiology and 
Diagnostic Imaging. A total of 62 chest X-ray images 
were obtained; 30 came from healthy individuals, and  
32 came from COVID-19-positive patients, confirmed by 
a RT-PCR test. The images were provided in a raw form, 
without masks. The dataset was introduced and described 
in [9]. Each model in this research was evaluated using  
4 validation metrics as follows: accuracy (Eq. 1), precision 
(Eq. 2), recall (Eq. 3), and F1-score (Eq. 4), which use the 
measures TP, FP, FN, and TN, as mentioned below. These 
metrics can be treated as a golden standard in ML-based 
studies. They can also help in comparison of the proposed 
method to the state-of-the-art results.
•	 TP – true positives – COVID-19 patient classified as 

sick;
•	 FP – false positives – COVID-19 patient classified as 

healthy;
•	 FN – false negatives – healthy patient classified as sick;
•	 TN – true negatives – healthy patient classified as 

healthy.

           TP + TNAccuracy = –––––––––––––––––––––––  (1)
 TP + TN + FP + FN
        TPPrecision = –––––––––––––  (2)
                 TP + FP
 TPRecall = ––––––––––––  (3)
             TP + FN
       precision × recallF1-score = 2 –––––––––––––––––––––––  (4)
         TP + TN + FP + FN

Results
All experiments were performed using the Nvidia Tesla 
with GPU support. Thanks to its enormous computing 
power, low price, relatively low demand for electricity, and 
the CUDA environment support, Tesla systems have be-
come an attractive alternative to traditional high-power 
computing systems, such as CPU clusters and supercom-
puters. This kind of device can be extremely helpful in 
image processing, especially in medical diagnostics.

The results obtained from all augmentation experi-
ments are provided in Table 1. All the evaluated met-
rics are given: accuracy, precision, recall, and F1-score. 
Clearly, the augmentations can improve evaluation met-
rics. For example, F1 metrics value increased from 87.5% 
(no augmentation, non-masked) to over 95% (mixed 
augmentations, non-masked). None of the proposed aug-
mentation schema resulted in lowering the evaluation 
metrics. The most promising scenario both for masked 
and non-masked images was the last one, i.e. with mixed 
augmentations. It is also noteworthy that masking can sig-
nificantly improve the evaluation metrics (raising F1 from 
95.2% to 98.5%).

Discussion
The augmentation method can be a very important ele-
ment of data pre-processing in the image analysis system, 
which improves the obtained results [10]. In this paper we 
presented the baseline schema of COVID-19 detection on 
lung X-ray images and improved it by proposing a very 
powerful augmentation technique. However, it should be 
mentioned that the utility of the augmentations vary; thus 
making some augmentations more useful and some less 
useful. In the proposed schema the most promising ap-
proach was to join all described groups and to implement 
them together.

In general, in the image analysis domain the augmen-
tation can be performed by some image processing meth-
ods (classical augmentation) or by machine learning (ML) 
techniques, e.g. GAN (Generative Adversarial Network). 
The first approach is less complicated computationally 
but surprisingly effective. GAN-based augmentation was 
described by Bargshady et al. [11]. In this paper the Cycle-
GAN architecture performed an image-to-image transla-
tion. Then, the whole augmented dataset was used for 
training the finetuned, pretrained Inception V3 network, 
resulting in an accuracy over 94% [11].

Another key AI-based element in our research is 
transfer learning. This is an approach extremely useful 
for image classification. It can be very powerful when the 
dataset is not sufficiently big. Moreover, using transfer 
learning allows the creation of a very complicated model 
without extreme computations. Transfer learning uses 
a pretrained network, making the learning process far 
shorter.
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As described by Dogan et al. [12], the 3 most exces-
sively used ML-based architectures in research concerning 
COVID-19 were: convolutional neural networks (CNN), 
random forest (RF), and ResNet. Whereas for large-scale 
image classification problems the most commonly used 
architectures were pre-trained networks: ResNet, UNet, 
VGG, Xception, GoogleNet, and XGBoost classifier.

Khan et al. [13] proposed the Deep Boosted Hybrid 
Learning (DBHL) architecture for effective COVID-19 
detection in X-ray lung images. This approach used trans-
fer learning and augmentation. The proposed framework 
was evaluated on radiologists’ authenticated chest X-ray 
data with satisfying results (accuracy = 98.5%, F1-score = 
98.0%, and precision = 98.0%).

Rahman et al. [14] evaluated the importance of the pre-
processing step of the ML-based system. Various transfer 
learning approaches (e.g. Resnet, DenseNet, InceptionV3) 
were compared with image enhancement methods, such 
as histogram equalization, contrast limited adaptive his-
togram equalization (CLAHE), image inversion, Gamma 
correction, and balance contrast enhancement technique 
(BCET). Because the used dataset was not balanced, 
the augmentation was implemented. For segmentation  
issues, the U-net architecture was used. It was observed 
that DenseNet201 was the best performing network for the 
segmented lung CXR images in COVID-19 detection using 
gamma-corrected samples. The network achieved accu-
racy of 95.11%, precision of 94.55%, recall of 94.56%, and  
F1-score of 94.53%.

Motamed et al. [15] used GAN (IAGAN and DC-
GAN) for augmentation and classification on a dataset 
from GitHub/IEEE and a second dataset of images of pa-
tients with pneumonia. The authors performed classifica-
tion including 3 classes (healthy, pneumonia, COVID-19). 
For comparison, the authors performed standard aug-
mentations using random rotations in the range of 20 de-
grees, width and height shift in the range of 0.2, and zoom 
in the range of 0.2. In this way, 8 new images each were 
generated, augmenting the dataset. On the COVID-19 da-
taset, the best ROC score obtained using IAGAN was 0.76, 
while the baseline was 0.74, and typical augmentation was 

0.75. The approach presented by the authors therefore al-
lowed a slight improvement in the results.

Nishio et al. [16] presented a classification method 
that use a pretrained VGG-16. The authors utilised an 
optimal combination of the 3 types of data augmentation 
methods (conventional method, mixup, and RICAP). 
Similarly to the above-mentioned studies, the dataset in-
cluded X-ray images that were derived from patients rep-
resenting 3 classes: healthy patients, COVID-19 patients, 
and patients with pneumonia. The authors achieved solid 
results, with an accuracy of 83.68% on testing data.

Sakib et al. [17] developed a custom CNN model. It 
was trained on real data and augmented data. The sug-
gested DARI (data augmentation of radiology images) al-
gorithm creates artificial X-ray pictures by using a combi-
nation of a specialized GAN structure and common data 
augmentation methods like zooming and rotation, which 
are chosen adaptively. The proposed solution achieves 
promising results: accuracy = 94.3%, precision = 95.3%, 
recall = 97.8%, and F1-score = 96.5%.

Narin et al. [18] compared some CNN-based mod-
els: ResNet50, ResNet101, ResNet152, InceptionV3, and 
Inception-ResNetV2, for different binary classification is-
sues: COVID-19 vs. viral pneumonia, COVID-19 vs. bac-
terial pneumonia, and COVID-19 vs. healthy. The dataset 
was unbalanced and contained only 341 COVID-19 sam-
ples (80% for training and 20% for testing). The authors 
reported ResNet50 as the most promising for COVID-19 
vs. normal classification, with the following results: ac-
curacy = 96.1% and F1-score = 83.5%.

Ozturk et al. proposed  a novel deep model, called 
DarkCovidNet, for early detection of COVID-19 cases 
using X-ray images [19]. In this approach a Darknet-19 
model was used as a baseline. The proposed network had 
fewer layers and filters than the original DarkNet. Even 
though the dataset was limited, the authors did not use 
augmentation or pre-processing. The obtained results 
were the following: sensitivity = 95.13%, specificity = 
95.30%, and F1-score = 96.51%.

In Table 2 we present some results obtained from 
a lite rature review. The table contains summarized results 

Table 1. The results obtained for the selected augmentation methods. The most promising results, achieved on masked data with mixed augmentation, 
are highlighted in bold

Augmentation Masked data Non-masked data

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

None 0.9032 0. 9063 0.9063 0.9063 0.8710 0.8750 0.8750 0.8750

Rotation 0.9516 0.9677 0.9375 0.9524 0.9194 0.9355 0.9063 0.9026

Colour 0.9516 0.9677 0.9375 0.9524 0.9194 0.9355 0.9063 0.9026

Contrast and brightness 0.9355 0.9667 0.9063 0.9355 0.8871 0.9032 0.8750 0.8889

Geometric 0.9516 0.9677 0.9375 0.9524 0.9194 0.9355 0.9063 0.9026

Noises 0.9516 0.9677 0.9375 0.9524 0.9194 0.9355 0.9063 0.9026

Mixed 0.9839 0.9697 1.0000 0.9846 0.9516 0.9677 0.9375 0.9524
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from several papers from the period 2020-2022 and their 
most promising proposed architecture. Because not all au-
thors provided accuracy, precision, recall, and F1-score, 
only the accuracy is presented in the table. The compari-
son proves that the approach proposed in this paper is 
competitive compared to the other state-of-the-art solu-
tions previously proposed. It is also possible that if the 
augmentation techniques were used in these approaches, 
their results could be more remarkable. Furthermore, 
Table 2 shows that the transfer learning technique is most 
often used in the case of X-ray image classificationApart 
from numeric metrics for model evaluation, it is crucial 
to introduce some explainability to the ML-based system 
[21,22]. Although AI models have achieved human-like 
performance, their use is still limited, partly because they 
are seen as a black box [23,24]. As presented by Jia et al. 
[25], the explainability in an emerging issue, particularly 
in ML-based healthcare systems. The problem with the 
use of AI-based tools in medicine continues to be the lack 
of confidence of medical professionals in such solutions 
and the perception that they lack the ‘intuition’ that ex-
perienced professionals possess [26,27]. The authors em-
phasized the role of explainability and its potential imple-
mentations: explanation by approximation, explanation by 
example, feature relevance explanation, and visual expla-
nation. In our research we focused on visual explanation. 
In Figure 3 some examples of results obtained for selected 
samples are visually presented as a heatmap. These images 
show the points that attracted more attention from the 

network. As presented in section A of the figure, the main 
focus points are placed outside the lungs. It is significantly 
improved in section B. It should be noticed that the clas-
sifier focused on points inside the lung – there are some 
patterns suggesting lung changes caused by COVID-19. 
A similar situation is visualized in sections C and D of the 
figure: in section C the classifier focused more on points 
outside the lungs; in section D the focus points were im-
proved.

Conclusions
Currently, there are 2 possible future improvements of the 
proposed schema. The first one is further explainability 
improvement so that the medical personnel can increase 
their trust the AI’s predictions. However, this issue is 
very (technically, mentally, and legally) demanding, and 
probably it is not possible to achieve this within 2 years.  
The second possible way of improving the proposed 
schema would be focusing on complexity reduction  
of the proposed schema. This would allow for reduction  
of energy consumption and a decreased carbon footprint 
of the performed calculations, which is still significant 
even though modern computers are extremely fast. 
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Table 2. Accuracy comparison between the proposed and SOTA methods

Reference Architecture Augmentation Result

Proposed Double ResNet  Acc. = 98.39%

Bargshady et al. [11] Inception V3  Acc. = 94.20%

Khan et al. [13] DBHL  Acc. = 98.53%

Rahman et al. [14] DenseNet201  Acc. = 95.11%

Nishio et al. [16] VGG-16  Acc. = 83.68%

Narin et al.[18] ResNet50  Acc. = 96.10%

Ozturk et al. [19] DarkCovidNet  Acc. = 98.08%

Wang et al. [20] COVID-Net  Acc. = 93.30%

Figure 3. xAI examples. A) A heatmap of non-masked image. B) A heatmap of masked A image. C) A heatmap of non-masked image. D) A heatmap  
of masked C image

A B C D
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