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Abstract
Purpose: To evaluate the feasibility of using a deep learning (DL) model to generate fat-suppression images and detect 
abnormalities on knee magnetic resonance imaging (MRI) through the fat-suppression image-subtraction method.

Material and methods: A total of 45 knee MRI studies in patients with knee disorders and 12 knee MRI studies in 
healthy volunteers were enrolled. The DL model was developed using 2-dimensional convolutional neural networks 
for generating fat-suppression images and subtracting generated fat-suppression images without any abnormal find-
ings from those with normal/abnormal findings and detecting/classifying abnormalities on knee MRI. The image 
qualities of the generated fat-suppression images and subtraction-images were assessed. The accuracy, average preci-
sion, average recall, F-measure, sensitivity, and area under the receiver operator characteristic curve (AUROC) of DL 
for each abnormality were calculated.

Results: A total of 2472 image datasets, each consisting of one slice of original T1WI, original intermediate-weighted 
images, generated fat-suppression (FS)-intermediate-weighted images without any abnormal findings, generated 
FS-intermediate-weighted images with normal/abnormal findings, and subtraction images between the generated 
FS-intermediate-weighted images at the same cross-section, were created. The generated fat-suppression images were 
of adequate image quality. Of the 2472 subtraction-images, 2203 (89.1%) were judged to be of adequate image quality. 
The accuracies for overall abnormalities, anterior cruciate ligament, bone marrow, cartilage, meniscus, and others 
were 89.5-95.1%. The average precision, average recall, and F-measure were 73.4-90.6%, 77.5-89.4%, and 78.4-89.4%, 
respectively. The sensitivity was 57.4-90.5%. The AUROCs were 0.910-0.979.

Conclusions: The DL model was able to generate fat-suppression images of sufficient quality to detect abnormalities 
on knee MRI through the fat-suppression image-subtraction method.
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Introduction
The development of deep learning (DL), an emerging 

field of artificial intelligence (AI), has greatly facilitated 
clinical decision support for interpreting medical images 
such as echocardiograms, chest radiographs, and magnetic 

resonance images (MRI) [1,2]. The use of DL algorithms to 
diagnose internal joint derangement through MRI analysis 
presents numerous possibilities. Investigational DL algo-
rithms for internal joint derangement have been developed 
to detect tears in the anterior cruciate ligament (ACL), me-
niscus, and articular cartilage in the knee, rotator cuff tears 
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in the shoulder, Achilles tendon tears in the ankle, as well 
as to identify nerves, bones, and muscles [1,2]. Pre vious 
DL-based knee MRI studies have mostly focused on a sin-
gle area such as the ACL, meniscus, or articular cartilage  
[3-14]. Recent studies have used 2-dimensional (2D) and 
3-dimensional (3D) convolutional neural network (CNN) 
DL models and MRI data to developed automated algo-
rithms that detect and grade abnormalities of multiple joint 
tissues [15,16]. Despite these advances, inputting image da-
tasets remains a challenge for complex DL algorithms.

Fat suppression technique is crucial for visualizing oe-
dema, cartilage structures, and bone marrow lesions. Sag-
ittal fat-suppressed proton-density or T2-weighted images 
have shown higher detection rates for abnormalities in the 
ligaments, bone marrow, articular cartilage, meniscus, and 
soft tissues [17,18]. In this study, we hypothesized that ab-
normal findings could be more easily detected by subtract-
ing knee fat-suppression images without abnormal findings 
from those with abnormal findings using DL. To test our 
hypothesis, we developed a DL model with 2D CNNs to 
accurately generate fat-suppression images from original 
non-fat-suppression images acquired with 2 different se-
quences, T1-weighted imaging (T1WI), and intermediate-
weighted imaging, as well as to generate fat-suppression im-
ages in which abnormal findings were completely removed  
(referred to as knee normal fat-suppression images). We 
then used the generated images to detect and classify ab-
normalities using the fat-suppression image-subtraction 
method, which involved subtracting abnormal minus nor-
mal images. The purpose of the study is to develop a DL 
model that can accurately generate fat-suppression images 
and easily detect and classify abnormalities on knee MRI.

Material and methods
This study was conducted with the approval of the Ethics 
Committee in our institution (S20064). The use of clinical 
data for this research was disclosed on the institutional 
website, and the potential participants were given the op-
portunity to decline to be further enrolled in the study.

MRI acquisition

All images were obtained in our institution using a 3 T MR 
scanner (Magnetom Skyra, Siemens Healthcare, Erlan gen, 

Germany) with an 8-channel knee coil. All studies con-
sisted of 2D-FSE T1-weighted (T1WI) and intermediate-
weighted images, with and without fat suppression in  
the sagittal plane. The parameters are shown in Table 1.  
All the images were extracted in Digital Imaging and Com-
munications in Medicine (DICOM) file format, converted 
to 8-bit greyscale Portable Network Graphics (PNG) for-
mat, and resized to 128 × 128 pixels.

Sample selection

Forty-five knee studies in 45 consecutive symptomatic pa-
tients (mean age 54.6 ± 20.3 years; 16 males/29 females;  
21 right/24 left) performed at 3 T in our institution be-
tween April 2020 and July 2020 were included. Cases after 
ligament reconstruction were excluded. The final diagno-
ses were osteoarthritis (n = 18), meniscal tear (n = 38), 
ligament tear (n = 5), post-resection of benign tumour  
(n = 2), Osgood-Schlatter disease (n = 1), and muscle in-
jury (n = 1). In addition, 12 knee MR studies in 6 healthy 
volunteers who had neither symptoms nor history of 
trauma in the knee (mean age 34.2 ± 9.5 years; 4 males/ 
2 females; 6 right/6 left) were included.

Deep learning (DL) model

The DL model uses 2D CNNs on the open-source Neural 
Network Console ver.2.1 deep learning library (A. Haya-
kawa et al., unpublished data, 2021), which was commer-
cially developed (Sony Network Communications, Tokyo, 
Japan, https://dl.sony.com) and was based on the Python 
programming language (version 3.6.3; Python Software 
Foundation, Wilmington, DE, USA), running on a com-
puter (eX.computer, Windows 10 operating system) with 
an AMD Ryzen 9 3950X 3.5 GHz processor, 64 GB RAM, 
and an NVIDIA GeForce RTX 2080Ti 11 GB graphics 
processing unit (NVIDIA, Santa Clara CA, USA).

Our DL algorithm consisted of two consecutive pro-
cesses: generation of fat-suppression images and detection 
and classification of abnormalities (Figure 1).

Generation of fat-suppression images

In this process, we developed 2 types of DL models using 
2D CNNs: one for generating fat-suppression images without 

Table 1. Imaging parameters of knee MRI at 3 Tesla

Sequence Plane TR/TE (ms) FOV (mm) Slice thickness 
(mm)

Spacing (%) Matrix

T1WI Sagittal 520/10 160-160 3 10 448 × 291

Intermediate-weighted 
image

Sagittal 4500/31 160-160 3 10 448 × 291

FS-intermediate-
weighted image

Sagittal 4500/31 160-160 3 10 448 × 291

T1WI – T1-weighted image, FS – fat suppression, TR – repetition time, TE – echo time, FOV – field of view
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Figure 1. Structure of deep learning model. A) Encoder-decoder network (Endeco-Net) for normal fat-suppression images. B) U-Net for fat-suppression 
images incorporating both normal and abnormal findings. C) Convolutional neural network for subtracting the generated normal fat-suppression images 
(Figure 1A) from the generated fat-suppression images with abnormal findings (Figure 1B) and detecting and classifying abnormal findings

T1W1

Interme-
diate- 

weighted 
image

FS- 
intermediate- 

weighted 
image

FS- 
intermediate- 

weighted 
image

(normal)

Subtraction 
image

Overall (normal, abnormal)U-Net

Endeco-Net

ACL abnormality (Y, N)

Bone marrow abnormality (Y, N)

Cartilage abnormality (Y, N)

Meniscus abnormality (Y, N)

Other abnormalities (Y, N)

7 ×
 7.

16

3 ×
 3.

32 25
6

10
24 664 76

8

12
8051
2

12
80

C

In
ce

pt
ion

 m
od

ule
Gl

ob
al 

Av
er

ag
e P

oo
lin

g
Fu

lly
 Co

nn
ec

ne
td

 La
ye

r
Sig

m
oid



 Deep learning/fat suppression in knee MRI

e565© Pol J Radiol 2023; 88: e562-e573

any abnormal findings (containing only normal findings),  
and another for generating fat-suppression images with 
normal and/or abnormal findings. The first DL model was 
specifically designed to synthesize fat-suppression images 
without any abnormal findings (referred to as normal fat-
suppression images) using an in-house convolutional en-
coder-decoder network (Endeco-Net) (Figure 1A). For this 
model, as a control group, we exclusively used normal MR 
images from 12 knee studies involving healthy volunteers. 
Consequently, the Endeco-Net was trained solely on normal 
findings and was capable of generating only normal find-
ings. Thus, we created 348 image datasets, each consisting of 
one slice of original T1WI, original intermediate-weighted 
images, original fat-suppressed (FS)-intermediate-weighted 
images, and generated FS-intermediate-weighted images  
at the same cross-section.

Next, we developed a DL model utilizing a U-Net net-
work for faithfully synthesizing fat-suppression images 
incorporating both normal and/or abnormal findings 
(Figure 1B). By using the 45 abnormal knee MR studies 
from 45 patients, we created 1263 image datasets, each 
consisting of one slice of original T1WI, original interme-
diate-weighted images, original FS-intermediate-weighted 
images, and generated FS-intermediate-weighted images 
at the same cross-section.

Detection and classification of abnormalities on knee MRI

In this process, apart from the previously mentioned En-
deco-Net and U-Net, we developed a dedicated DL model 
for subtracting the generated normal fat-suppression im-
ages (FS-intermediate-weighted images) (fat-suppression 
images without any abnormal findings) from the generat-
ed fat-suppression images (FS-intermediate-weighted im-

ages) with abnormal findings in order to effectively detect 
abnormalities. Furthermore, we developed an additional 
DL model specifically designed for the detection and clas-
sification of these abnormalities (Figures 1C and D).

Based on the luminance of the subtraction images, 
a threshold of 128 out of 256 colour tones between free 
fluid and oedema was determined. Thus, the colour blue 
was displayed when a certain area was free fluid (≥ 128), 
while the colour red was displayed when it was judged 
to be oedema (≤ 128). The value of 128 was employed to 
effectively exclude free fluid. Prior to setting the value of 
128, a radiologist assessed whether it was possible to dis-
tinguish between free fluid and oedema in several cases. 
Therefore, abnormalities of the ACL, bone marrow, arti-
cular cartilage, and menisci are depicted in the colour red. 
Attenuation map images were generated by superimpos-
ing the subtraction images on acquired intermediate-
weighted images.

We augmented the image data by randomly zoom-
ing in and out, rotating within a range of –0.15 and +0.15 
radians, and flipping it left and right [19]. We primarily 
focused on fine structures in the knee joints, so we applied 
such data augmentation.

From the 1263 image datasets, each consisting of one 
slice of original T1WI, original intermediate-weighted 
images, and original FS-intermediate-weighted images, 
a total of 2472 image datasets, each consisting of one slice 
of original T1WI, original intermediate-weighted images,  
FS-intermediate-weighted images synthesized using  
Endeco-Net, FS-intermediate-weighted images synthe-
sized using U-Net, and subtraction images between the 
FS-intermediate-weighted images synthesized using  
Endeco-Net and synthesized using U-Net at the same 
cross-section, were created.

1 × 1 1 × 1

5 × 5 1 × 1

1 × 1

3 × 3

3 × 3

Figure 1. Cont. Structure of deep learning model. D) Inception module in the convolutional neural network (Figure 1C)
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Image assessments

Two board-certified radiologists independently assessed 
the image quality of the 2472 FS-intermediate-weighted 
images synthesized by Endeco-Net, 2472 FS-interme-
diate-weighted images synthesized by U-Net, and 2472 
subtraction images between these fat-suppression im-
ages. One of the radiologists conducted a second evalu-
ation after a one-month interval. The image assessments 
were performed on a liquid crystal display monitor (dia-
gonal 80 cm [31.5”], screen ratio 16:9; resolution 2560  
× 1440, 3.7 megapixels). Regarding inter-reader agree-
ment by 2 radiologists and intra-reader agreement by one 
radiologist, kappa values were calculated. The strength of 
agreement quantified by the kappa statistic was graded 
as follows: < 0, poor; 0.01-0.20, slight; 0.21-0.40, fair;  
0.41-0.60, moderate; 0.61-0.80, substantial; and 0.81–1, 
almost perfect [20].

In regard to the labelling of image sets, we labelled 
each image set. The presence or absence of overall ab-
normalities on the image sets, which consisted of one 
slice each of the original sagittal T1WI, original sagit-
tal intermediate-weighted images, and original sagittal  
FS-intermediate-weighted images at the same cross-sec-
tions, was determined by the radiologist. In addition, the 
presence or absence of abnormalities involving the ACL, 
bone marrow, articular cartilage, and menisci, joint ef-
fusion with capsular distention, soft-tissue oedema, and 
other fluid collections was also assessed. Thus, determi-
nations of abnormal findings were made on a per-slice 
basis. In cases where equivocal findings were encoun-
tered, the adjacent 1- or 2-slice images were reviewed to 
reach a definitive conclusion. Finally, a cross-check was 
conducted with clinical diagnoses based on the medical 
information.

“ACL abnormality” was defined as a complete tear, 
partial tear, or mucoid degeneration of the ACL. A partial 
tear of the ACL was defined as any fibre discontinuity of 
up to 80%. Mucoid degeneration of the ACL was a thick-
ened, ill-defined ACL, with increased signal intensity 
on all MR sequences but without fibre discontinuity [8].  
Because these categories are difficult to distinguish even 
on the radiologist’s readings of MRI, we did not differenti-
ate among them. “Bone marrow abnormality” was defined 
as any bone marrow oedema pattern. “Cartilage abnor-
mality” was defined as articular cartilage irregularity, focal 
defect, or diffuse thinning due to cartilage degeneration 
at the medial and lateral femorotibial joints and patello-
femoral joints [6]. “Meniscus abnormality” was defined 
as a vertical tear, horizontal tear, complex tear, irregular-
shaped meniscus, or disappeared or displaced meniscus.

Statistical analysis

We divided the image datasets, including the FS-interme-
diate-weighted images synthesized by U-Net, and the sub-

traction images, into 3 groups for training, validation, and 
testing. To evaluate our DL model, 5 metrics of predictive 
power (accuracy, average precision, average recall, F-mea-
sure, and sensitivity) were calculated on a Neural Network 
Console ver. 2.1 deep learning library (Sony). In addi-
tion, area under the receiver operator characteristic curve  
(AUROC) values were also calculated with commercial soft-
ware (SPSS for Windows ver. 28.0, IBM, Armonk, NY, USA).

Results

Generation of fat-suppression images

Out of the 2472 image datasets (each consisting of one 
slice of original T1WI, original intermediate-weighted im-
ages, FS-intermediate-weighted images synthesized using 
Endeco-Net, FS-intermediate-weighted images synthesized 
using U-Net, and subtraction images between the FS- 
intermediate-weighted images synthesized using Endeco-
Net and synthesized using U-Net at the same cross-section), 
2203 (89.1%) were deemed to have adequate image qual-
ity, while 269 (10.9%) were determined to have inadequate 
image quality. In terms of the breakdown of judging of 
inadequate image quality, the fat suppression images syn-
thesized through the Endeco-Net and U-Net were consid-
ered satisfactory. However, 10.9% of the subtraction images 
synthesized by Endeco-Net and U-Net were judged to have 
inadequate image quality. One radiologist determined that 
the 10.9% of the subtraction images did not affect the diag-
nosis of internal derangements in the knee joint.

The inter-reader agreement was substantial (k value: 
0.77), and the intra-reader agreement was almost perfect 
(k value: 0.88).

Detection and classification of abnormalities on knee MRI

The image datasets for training, validation, and testing 
were 1799 (81.7%), 99 (4.5%), and 305 (13.8%), respec-
tively. A summary of the training, validation, and testing 
image datasets is shown in Table 2.

Of the 2203 image datasets, 976 (44.3%) were inter-
preted by the radiologist as “normal” and 1227 (55.7%) 
were determined to be “abnormal”. Of the “abnormal” im-
ages, an ACL abnormality was detected in 11.9%, a bone 
marrow abnormality in 27.3%, a cartilage abnormality in 
55.0%, a meniscus abnormality in 64.9%, and other diag-
noses in 14.4%.

Accuracy, average precision, average recall, F-measure, 
and sensitivity of our DL model for determining whether 
presence or absence of overall abnormalities on knee MRI 
were 89.5%, 89.4%, 89.4%, 89.4%, and 90.5%, respectively. 
The AUROC (95% confidence interval [CI]) was 0.931 
(0.899–0.963). Accuracies, average precisions, average 
recalls, F-measures, sensitivities, and AUROCs to detect 
each abnormality are shown in Table 3.

Representative cases are shown in Figures 2 and 3.
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Table 2. A summary of datasets for training, validation, and testing

Total Training Validation Testing

Number of image sets (%) 2203 1799 (81.7) 99 (4.5) 305 (13.8)

Number of normal (%)  976 (44.3) 788 (43.8) 51 (51.5) 137 (44.9)

Number of abnormal (%) 1227(55.7) 1011(56.2) 48 (48.5) 168 (55.1)

Number of ACL abnormalities (%)  146 (11.9) 115 (6.4) 3 (3.0) 28 (9.2)

Number of bone marrow abnormalities (%) 335 (27.3) 262 (14.6) 12 (12.1) 61 (20.0)

Number of cartilage abnormalities (%)  675 (55.0) 542 (30.1) 24 (24.2) 169 (35.7)

Number of meniscus abnormalities (%)  796 (64.9) 653 (36.3) 32 (32.3) 111 (36.4)

Number of other abnormalities (%)  177 (14.4) 157 (8.7) 6 (6.1) 14 (4.6)
ACL – anterior cruciate ligament

Table 3. Results of metrics to detect abnormalities in knee MR imaging by DL model with 2D CNNs

Abnormality Accuracy Average precision Average recall F-measure Sensitivity AUROC (95% CI)

ACL 95.1% 84.9% 86.1% 85.5% 75% 0.979 (0.965-0.993)

Bone marrow 89.5% 87.8% 77.5% 81.2% 57.4% 0.910 (0.863-0.956)

Cartilage 89.8% 90.6% 87.2% 88.5% 80% 0.947 (0.920-0.974)

Meniscus 89.5% 89.8% 87.3% 88.3% 79.4% 0.943 (0.916-0.970)

Others 95.1% 73.4% 87.2% 78.4% 78.6% 0.921 (0.819-1.000)

Overall* 89.5% 89.4% 89.4% 89.4% 90.5% 0.931 (0.899-0.963)
DL – deep learning, 2D CNN – 2-dimensional convolutional neural network, AUROC – area under receiver operating characteristic curve, 95% CI – 95% confidence interval, ACL – anterior cruciate 
ligament. Others include joint effusion with capsular distention, soft-tissue oedema, and soft-tissue fluid collection. *Overall means presence or absence of any abnormalities on knee MR images

Discussion
We developed a DL model with 2D CNNs for the syn-
thesis of fat-suppression images from 2 different non-

fat-suppressed 2D-FSE sequences (T1WI and interme-
diate-weighted-image) and presented a fat-suppression 
subtraction-image method using 2D CNN DL algorithms 
for the detection and classification of abnormal findings 

Figure 2. A 53-year-old male. (A) Original sagittal T1-weighted image, (B) original sagittal intermediate-weighted image, (C) original sagittal fat-suppressed intermediate- 
weighted image, (D) fat-suppressed intermediate-weighted image synthesized by U-Net, (E) fat-suppressed intermediate-weighted image synthesized by Endeco-Net 
(normal fat-suppression image), (F) subtraction image between fat-suppression images synthesized by U-Net and synthesized by Endeco-Net, (G) attenuation map image.  
(D, E) Fat-suppression intermediate-weighted images synthesized by U-Net and Endeco-Net both are of adequate image quality. (D, F, G) Joint effusion (arrow), bone mar-
row edema pattern and cartilage loss (thin arrow), and meniscus tear (curved arrow) are shown on the fat-suppressed intermediate-weighted image synthesized by U-Net, 
subtraction image, and attenuation map image. Joint effusion is represented in blue color, while bone marrow edema pattern and cartilage loss and meniscus tear are shown 
in red color on the attenuation map. Our deep learning model detected bone marrow abnormality, cartilage abnormality, and meniscus abnormality

A B C
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on knee MRI. The accuracy, average precision, average 
recall, F-measure, and sensitivity of our DL model for 
determining the presence or absence of overall abnor-
malities on knee MRI were 89.5%, 89.4%, 89.4%, 89.4%, 
and 90.5%, respectively. The AUROC was 0.931. For the 
specific abnormalities, the sensitivity was 57.4% for bone 
marrow oedema, while for ACL, cartilage, meniscus, 
and others it ranged from 75.0% to 80.0%. The accura-
cy was between 89.5% and 95.1% for all abnormalities.  
The AUROC was between 0.910 and 0.979. These results 
indicate that our DL model with 2D CNNs can generate 
fat-suppression images of sufficient quality from 2 dif-
ferent non-fat-suppressed 2D-FSE sequences and detect 
and classify abnormalities on knee MRI through the fat-
suppression image-subtraction method.

Fayad et al. [21], who developed a DL model utilizing 
2D CNNs for generating FS-intermediate-weighted-images 
from non-FS-intermediate-weighted-images with 3D-FSE, 
demonstrated the feasibility of DL-based synthesis of 
high-quality fat suppression images. In our study, 10.9% 
of the image datasets were determined to have inadequate 
image quality. Because there are no previous studies for 
comparison, it is challenging to determine whether this 
percentage is high or low. This 10.9% specifically pertained 
to issues observed in the subtraction images between the 
fat-suppression images synthesized through Endeco-Net 
and U-Net. Indeed, the fat-suppression images synthesized 
by Endeco-Net and U-Net were found to be satisfactory. 
The reasons for inadequate image quality were identified 
as blurring and misregistration at the anatomical edges, 
particularly in the medial and lateral aspects of the knee, 
observed in the subtraction images. This may be due to the 

process of the synthesis of fat-suppression images without 
any abnormality. For the removal of any abnormal find-
ings, we used an encoder-decoder to perform data reduc-
tion. In addition, only one sequence series of an original 
2D-FSE intermediate-weighted imaging dataset was used 
as an input at the training. Initially, we considered includ-
ing 2 sequence series as an input for Endeco-Net; however, 
we found that a lower data volume of input was more ef-
fective in removing abnormal findings and in generating 
fat-suppression images without any abnormal findings (re-
ferred to as normal fat-suppression images). This aspect 
represents one of the key principles of our DL models. 
While, for the synthesis of fat-suppression images with 
normal and/or abnormal findings, a U-Net network was 
used. In addition, original 2D-FSE T1WI and intermedi-
ate-weighted images were used as an input. This decision 
was made based on the belief that at least 2 different im-
aging sequences were necessary to accurately synthesize 
fat-suppression images with abnormalities. In any case, the 
sagittal plane images of the medial and lateral aspects of 
the knee joint, comprising only skin and subcutaneous fat, 
generally have minimal impact on the diagnosis of knee 
joint derangements. One radiologist determined that the 
10.9% of subtraction images did not affect the diagnosis of 
internal derangements in the knee joint.

Previously, Bien et al. [15] developed a DL model 
using 2D CNNs for detecting abnormalities in the knee 
(MRNet) using a dataset of 1370 knee MRIs, including 
all 3 orthogonal planes. The reference standards were 
a majority vote of 3 musculoskeletal radiologists. Their 
DL model achieved accuracy, sensitivity, and AUROC of 
85%, 87.9%, and 0.937 for detecting overall abnormal-

Figure 3. A 63-year-old male. (A) Original sagittal T1-weighted image, (B) original sagittal intermediate-weighted image, (C) original sagittal fat-suppressed interme-
diate-weighted image, (D) fat-suppressed intermediate-weighted image synthesized by U-Net, (E) fat-suppressed intermediate-weighted image synthesized by Endeco- 
Net (normal fat-suppression image), (F) subtraction image between fat-suppression images synthesized by U-Net and by Endeco-Net, (G) attenuation map image.  
(D, E) Fat-suppression intermediate-weighted images synthesized by U-Net and Endeco-Net both are of adequate quality. (D, F, G) Joint effusion (arrow) and anterior 
cruciate ligament abnormality (thin arrow) are shown on the fat-suppressed intermediate-weighted image synthesized by U-Net, subtraction image, and attenuation 
map image. Joint effusion is represented in blue color. A red color overlay is observed on the ACL, which indicate an ACL abnormality on the attenuation map. Our deep 
learning model detected anterior cruciate ligament abnormality

A B C

D E F G



 Deep learning/fat suppression in knee MRI

e569© Pol J Radiol 2023; 88: e562-e573

ity on knee MRI, respectively. In the following 2 studies, 
there are ambiguous aspects in the definition of general/
overall abnormality. Irmakci et al. [22], who attempted 
to evaluate several DL models for abnormality detec-
tion in the knee, reported varying accuracy ranging from 
82.5% to 85.8%, sensitivity ranging from 96.8% to 97.9%, 
and AUROC ranging from 0.811 to 0.909. Tsai et al. [23] 
reported accuracy of 91.7%, sensitivity of 96.8%, and  
AUROC of 0.941. In our study, the accuracy, sensitivity, 
and AUROC of our DL algorithms for the detection of 
overall abnormalities were 89.5%, 90.5%, and 0.931, re-
spectively. The AUROC in our series was nearly on par 
with their results, while the accuracy and sensitivity were 
superior to those of Bien’s study.

For the specific abnormalities, our results showed high 
accuracy (95.1%) and AUROC (0.979) but a low sensitivity 
of 75% for ACL tears. Bien et al. [15] reported a sensitivity 
of 76% for ACL tears, although the specificity was 97%, 
while Chang et al. [6] demonstrated a sensitivity of 100% 
and an accuracy of > 96%. Liu et al. [24] used a 2D CNN 
DL model to investigate another ACL assessment approach 
for binary ACL-tear classification and reported 96% for 
both sensitivity and specificity and 0.980 for an AUROC. 
Germann et al. [7] reported a DL model using 3D CNNs 
for detecting ACL tears with a sensitivity of 96.1%, a speci-
ficity of 93.1%, and an AUROC of 0.935. Irmarci et al. [22] 
reported sensitivity of 77.8%, specificity of 93.9%, accuracy 
of 86.7%, and AUROC of 0.954. Zhang et al., [11] using 
3D CNN model reported sensitivity of 97.6%, specificity 
of 94.4%, accuracy of 95.7%, and AUROC of 0.960. As-
tuto et al. [16], using a 3D CNN DL model and 3D-FSE 
MRI datasets, reported sensitivity of 88% and specificity of 
89% for the detection of ACL abnormalities. In our study, 
we designed a DL model using 2D CNNs. The accuracy 
for the detection of ACL abnormalities in our series was 
comparable to these previous studies. The sensitivity for 
the detection of ACL abnormalities was similar to that in 
Bien’s study [15], but both sensitivities were lower than the 
other previous studies. Namiri et al. [3] previously report-
ed that 2D and 3D CNN DL models performed similarly 
in classifying ACL abnormalities. They reported sensitivity 
of 76.4% and 82.4% and specificity of 93.7% and 99.6%, 
respectively. Recently, Shin et al. [25], who used a 2D CNN 
DL model and one oblique-sagittal image along the ACL 
on which the largest ACL area was observed, reported ac-
curacy of 94.1% and AUROC of 0.941. Our series included 
only a small number of ACL abnormalities. Although it 
is well known that most ACL tears are visible on sagittal 
images, [17] the entire ACL was not shown on a single-
slice sagittal image. Therefore, for the detection of ACL 
abnormalities, cropping the images to the ACL, multi-slice 
input, or multi-plane input might increase the sensitivity.

Regarding the cartilage abnormalities, our results 
showed that the accuracy, sensitivity, and AUROC were 
89.8%, 80%, and 0.947, respectively. Liu et al. [5] report-
ed the sensitivity ranging from 80.5% to 84.1%, speci-

ficity from 85.2% to 87.9%, and AUROC from 0.914 to 
0.917 using 2D CNN and 2D FSE FS-T2WI in the sagittal 
plane. Astuto et al. [16], using 3D CNN and 3D FSE im-
ages, reported sensitivity of 85%, specificity of 89%, and 
AUROC of 0.930. Our results were quite similar to theirs.  
In meniscus abnormalities, a relatively large number of 
studies using DL have previously been reported [4,9, 
12,15,16,24-27]. Multi-slice or multi-plane input might 
increase the sensitivity in the detection of meniscus tears. 
Liu et al. [5] also found that DL-based detection had sub-
stantial intraobserver agreement, but clinical radiologists 
had moderate to substantial inter-observer agreement. DL 
was less prone to errors due to inexperience, distraction, 
or fatigue but had a high false-positive rate and was not 
effective in evaluating images with disparate parameters.

To date, only a limited number of studies have em-
ployed DL for the detection of bone marrow abnormali-
ties. Astuto et al. [16], using DL for the detection through 
3D CNN and 3D FSE sequences, reported lower sensitiv-
ity (70%) for the detection of bone marrow oedema com-
pared to other tissues. Fayed et al. [21], who developed 
a DL model utilizing 2D CNNs for generating FS-inter-
mediate-weighted-images from non-FS-intermediate-
weighted-images with 3D-FSE, reported sensitivity of 76% 
and specificity of 90% when human readers interpreted 
the generated FS-intermediate-weighted-images. Kijow-
ski et al. [28] reported the same trend in their evaluation 
for bone marrow oedema on 3D FSE FS-intermediate-
weighted images by 2 musculoskeletal radiologists, with 
lower sensitivity (85.3%). In our study, although using 
DL detection based on 2D sequences, the accuracy and 
AUROC for the detection of bone marrow abnormalities 
were 89.5% and 0.910, respectively. However, the sensitiv-
ity was relatively low at 57.4%. This suggests that it is dif-
ficult to determine if bone marrow findings are abnormal 
or not due to significant variations in the size, location, 
and signal intensity of bone marrow abnormalities in the 
femur, tibia, and patella, even though our DL models were 
able to identify changes in bone marrow signals. We think 
that establishing a gold standard for bone marrow abnor-
mality is also challenging. As a future step, to improve the 
diagnostic accuracy of bone marrow abnormality, it may 
be necessary to augment the number of cases and improve 
training data for the DL models. Additionally, incorporat-
ing the bone marrow finding with other findings could 
promote a comprehensive assessment.

A summary of DL studies for abnormal detection on 
knee MRI is presented in Table 4 [3-7,9,11-13,15,16,22-27,29].

There are several limitations to this study. Firstly, the 
number of image data included in this study, acquired from 
both patients and healthy volunteers, was small, and the 
knee MRI protocols and parameters were fixed. External 
cross-validation is necessary to confirm our preliminary 
observations [30]. Larger studies in an uncontrolled envi-
ronment are also needed to assess the clinical usefulness of 
this method. Secondly, we did not use a surgical standard 
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Table 4. A summary of DL studies for abnormality detection on knee MRI

Author Year Analysed pulse 
sequence

Field 
strengths 

[T]

DL 
model

Sensitivity Specificity Accuracy AUROC Comments

Overall abnormality

Bien et al. [15] 2018 2D*, sag FST2, cor T1, ax PD 1.5, 3 2D CNN 87.9% 71.4% 85% 0.937

Irmakci et al. [22] 2020 2D*, sag T2, cor T1, ax PD 1.5, 3 2D CNN 96.8-97.9% 28-40% 82.5-85.8% 0.811-0.909 The definition of general 
abnormality is unclear.

Tsai et al. [23] 2020 1.5, 3 2D CNN 96.8% 72% 91.7% 0.941 Analysed pulse 
sequences are unclear. 

The definition of general 
abnormality is unclear.

Range 87.9-97.9% 28-72% 82.5-91.7% 0.811-0.941

The present study 2D*, sag T1, IWI 3 2D CNN 90.5% 89.5% 0.931

Anterior cruciate ligament abnormality

Bien et al. [15] 2018 2D*, sag FST2, cor T1, ax PD 1.5, 3 2D CNN 75.9% 96.8% 86.7% 0.965

Chang et al. [6] 2019 2D*, cor PD 1.5, 3 2D CNN 100% 93.3% 96.7% Mucoid degeneration 
and partial tear  

are excluded.

Liu et al. [24] 2019 2D*, sag FST2, sag PD 3 2D CNN 96% 96% 0.980

Germann et al. [7] 2020 2D*, cor STIR, sag FST2 1.5, 3 3D CNN 96.1% 93.1% 0.935

Irmakci et al. [22] 2020 2D*, sag T2, cor T1, ax PD 1.5, 3 2D CNN 77.8% 93.9% 86.7% 0.954

Zhang et al. [11] 2020 2D*, sag FSPD 1.5, 3 3D CNN 97.6% 94.4% 95.7% 0.960

Namiri et al. [3] 2020 3D*, sag FSPD 3 2D CNN 82.4% 93.7% Full-thickness tears  
are assessed.

Namiri et al. [3] 2020 3D*, sag FSPD 3 3D CNN 76.4% 99.6% Full-thickness tears  
are assessed.

Tsai et al. [23] 2020 1.5, 3 2D CNN 92.3% 89.1% 90.4% 0.960 Analysed pulse 
sequences are unclear.

Awan et al. [13] 2021 2D*, sag FSPD 1.5 2D CNN 91.7% 94.7% 0.980

Astuto et al. [16] 2021 3D*, sag FSPD 3 3D CNN 88% 89% 0.900

Shin et al. [25] 2022 2D*, sag FST2 1.5 2D CNN 94.1% 0.941 Single oblique-sagittal 
images along the 
anterior cruciate 

ligament are assessed.

Tran et al. [29] 2022 2D*, 3D*; sag, cor FSPD/
FST2

1, 1.5, 3 2D CNN 87% 91% 90.2% 0.941 MRI studies from  
12 imaging centres  

are included.

Range 75.9-100% 89-99.6% 86.7-96.7% 0.900-0.980

The present study 2D*, sag T1, IWI 3 2D CNN 75% 95.1% 0.979

of reference for correlation. Thirdly, in this study, we em-
ployed a value of 128 within a range of 256 colour tones 
to differentiate between free fluid and oedema, especially 
aiming to enhance the specificity of bone marrow abnor-
mality detection. Before setting the value of 128, a radiolo-
gist deliberated if it was possible to distinguish between free 

fluid and oedema in several cases. Because there might be 
overlap between free fluid and oedema, reassessment of the 
threshold might be required. Fourthly, due to being based 
on the accuracy on a per-slice basis, there appears to be 
a tendency for the diagnostic accuracy to be relatively low. 
Moreover, in cases where the ACL, articular cartilage, and 
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meniscus are entirely absent within a slice, free fluid may be 
detected. However, typically, even if oedema is not detected 
at the site where these tissues are absent, it is common for 
findings of oedema to be present in the neighbouring tis-
sues. Alternatively, in consecutive adjacent slices, a finding 
of oedema is detected, which is expected to be present in 
the surrounding tissues. Hence, 3-dimensional analysis 

may be considered necessary to improve the diagnostic ac-
curacies. Finally, we did not evaluate the diagnostic perfor-
mance of human readers when assisted by our DL model. 
Although our initial results are promising, further technical 
development and correlation with surgical findings as the 
gold standard will be required before this method can be 
implemented fully in clinical practice.

Bone marrow abnormality

Astuto et al. [16] 2021 3D*, sag FSPD 3 3D CNN 70% 88% 0.830

Range 70% 88% 0.830

The present study 2D*, sag T1, IWI 3 2D CNN 57.4% 89.5% 0.910

  Cartilage abnormality**

Liu et al. [5] 2018 2D*, sag FST2 3 2D CNN 80.5-84.1% 85.2-87.9% 0.914-0.917

Pedoia et al. [4] 2019 3D*, sag FSPD 3 3D CNN 80% 80.3% 0.880 Patellar cartilages 
are assessed.

Astuto et al. [16] 2021 3D*, sag FSPD 3 3D CNN 85% 89% 0.930

Range 80-85% 80.3-89% 0.880-0.930

The present study 2D*, sag T1, IWI 3 2D CNN 80% 89.8% 0.947

Meniscus abnormality

Bien et al. [15] 2018 2D*, sag FST2, cor T1, ax PD 1.5, 3 2D CNN 71% 74.1% 72.5% 0.847

Pedoia et al. [4] 2019 3D*, sag FSPD 3 3D CNN 82% 89.8% 0.890

Fritz et al. [12] 2020 2D*, sag FSIWI, cor STIR 1.5, 3 3D CNN 91.2% 87.1% 90% 0.961

Irmakci et al. [22] 2020 2D*, sag T2, cor T1, ax PD 1.5, 3 2D CNN 61.5-69.2% 76.5-85.3% 70.0-75.8% 0.779-0.808

Tsai et al. [23] 2020 1.5, 3 2D CNN 86% 89% 88% 0.904 Analysed pulse 
sequences are 

unclear.

Rizk et al. [9] 2021 Sag, cor FSPD 1, 1.5, 3 3D CNN 67-89% 84-88% 82-87% 0.840-0.930 Analysed pulse 
sequences are 

unclear. Medial 
and lateral 
meniscus  

are separately 
assessed.

Astuto et al. [16] 2021 3D*, sag FSPD 3 3D CNN 85% 85% 0.930

Li et al. [26] 2022 2D*, sag FSPD 3 3D CNN 94.1% 78.5% 92.4% 0.907

Shin et al. [27] 2022 2D*. sag, cor FST2 1.5 2D CNN 78.6% 93.3% 92.0% 0.924

Range 61.5-94.1% 74.1-93.3% 70-92.4% 0.779-0.961

The present 
study

2D*, sag T1, IWI 3 2D CNN 79.4% 89.5% 0.943

DL – deep learning, AUROC – area under the receiver operator characteristic curve, 2D* – 2-dimensional pulse sequence, 3D* – 3-dimensional pulse sequence, sag – sagittal image, cor – coronal 
image, axi – axial image, FS – fat-suppressed, T2 – T2-weighted image, T1 – T1-weighted image, PD – proton density-weighted image, IWI – intermediated-weighted image, 2D – two-dimensional, 
3D – three-dimensional, CNN – convolutional neural network 
**From the category of cartilage abnormality, osteoarthritis studies are excluded.

Author Year Analysed pulse 
sequence

Field 
strengths 

[T]

DL 
model

Sensitivity Specificity Accuracy AUROC Comments

Table 4. Cont.
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