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Abstract
Paediatric skull lesions are commonly identified on imaging. They can be challenging to image, given their location 
and size, and often require several imaging modalities to narrow down the differential diagnosis. Accurate diagnosis 
of these lesions is paramount because the clinical therapy can vary tremendously. In this review, we provide a simple 
and systematic approach to clinical-radiological features of primary skull lesions. We highlight the imaging charac-
teristics and differentiate pathologies based on imaging appearances. We also accentuate the role of cross-sectional 
imaging in lesion identification and management implications.
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Introduction
Skull lesions in the paediatric population are common en-
tities and often constitute a diagnostic dilemma for radiol-
ogists. A wide spectrum of lesions exists, which includes 
congenital, traumatic, infectious, neoplastic, vascular, and 
post-surgical abnormalities during imaging pathways.  
The wide array of differential diagnoses challenges the ra-
diologists to identify the lesion as either benign or malig-
nant in nature. Providing a systematic pathway to dia gnosis 
increases the reader’s confidence in accurately diagnosing 
these lesions, whether it is an incidental or palpable ab-
normality (Figure 1). Depending on the age of the patient, 
certain pathologies predominate; in neonates and infants, 
congenital and benign lesions are more prevalent, whereas 
in older children, neoplastic and inflammatory origins are 
to be considered (whether symptomatic or asymptomatic). 

Imaging modalities such as thin-section computed tomo-
graphy (CT), multi-parametric magnetic resonance imag-
ing (MRI), and sonography (US) are essential to define the 
origin, nature, and extent of these lesions. The aim of this 
review is to provide radiologists with a simple and systema-
tic approach to the characterisation, detection, and differ-
ential diagnosis of paediatric skull lesions. 

Congenital

Congenital depression of the skull

Congenital depression of the skull is rare, with an esti-
mated incidence of < 0.0001% [1]. Most of these cases 
are probably related to trauma during difficult labour, by 
obstetric manoeuvres or pressure from forceps. In the ab-
sence of trauma or risk factors, reports of depressed skull 
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fractures are rare [1-7]. In a small number of reported cas-
es, intrauterine events have been thought to be the cause. 
Other postulated risk factors include pressure on the soft 
foetal skull from maternal structures such as ischial spines, 
fifth lumbar vertebrae, pubic symphysis, asymmetric or 
contracted pelvis, and uterine myomas [8-10]. Skull de-
pressions may occur with or without fractures and can be 
classified as linear, depressed, or ‘ping-pong’ fractures and 
occipital osteodiastasis [11]. They most frequently occur 
in the temporal and parietal bones [12]. In the majority of 
cases, neonates are neurologically intact; deficits are a rare 
association, often secondary to intra- or extra-axial haema-
tomas. 

Computed tomography of the head is usually the mo-
dality of choice. It reveals fractures, secondary haemato-
mas, and brain compression, all of which would require 
aggressive treatment [10] (Figure 2). Magnetic resonance 
imaging is indicated if there is suspicion of structural 
brain anomalies. The majority of skull depressions resolve 

spontaneously within 4-6 months, and in the absence of 
neurological symptoms, a conservative approach with 
a six-month observation period is advised [13,14]. 

Frontonasal dysplasia

Frontonasal dysplasia (FND), also known as Tessier cleft, 
median cleft face syndrome, frontonasal dysostosis, or 
frontonasal malformation, is a congenital malformation 
of the midface [15]. While its cause is still unknown, en-
vironmental and genetic factors may play a role [16,17]. 

Diagnostic criteria for FND are a wide nasal root, 
hyper telorism, vertical midline cleft of the nose and/or 
upper lip, cleft of the wings of the nose, malformed nasal 
tip, or V-shaped hair pattern on the forehead [15]. Patients 
can present with at least two of the above-mentioned signs 
to be labelled with FND. There are two different catego-
ries of mid-facial malformations. The first is with hyper-
telorism, which includes FND. The second is with hypo-
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Figure 1. Imaging pathways of skull lesions in the paediatric population

Figure 2. A) Skull film shows focal depression of right anterior parietal skull (arrow). B, C) Axial head computed tomography with soft tissue and bone 
windows show abnormal contour and depression of the right calvarium. No acute fractures were identified
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telorism and includes holoprosencephaly [18,19]. Plain 
films and computed tomography of the skull are crucial 
for planning surgery (Figure 3) [20]. Prenatal ultrasound 
can depict various features of FND [21,22]. The first goal 
of postnatal treatment is to establish a proper airway be-
cause newborns can only breath through the nose [23].

Aplasia cutis congenita

Aplasia cutis congenita (ACC) can be clinically diagnosed; 
defined as the congenital absence of the skin, it presents 
with a focal ulcer over the vertex of the skull [24,25].  
The cause of ACC remains obscure, with various aetiol-
ogies suggested [26,27]. The defect involves the calvaria 
and the dura mater, with 20-30% of cases presenting with 
associated anomalies [25,28-31]. While the majority of 
children have a single defect, it is doubled in 20% and 
may involve the trunk or limbs [32-38]. Larger defects 
revealing the dura and sagittal sinus require treatment at 
birth to avoid complications such as meningeal infection 
and haemorrhage. If ACC occurs as a small focal ulcer, it 
heals spontaneously [34,37]. However, when the defect is 
large, surgery is performed to prevent complications [31].

Conventional radiographs of the skull demonstrate 
bony defects at the level of the absent skin. MRI or CT 
clearly delineates intracranial malformations and demon-
strates the proximity of the scalp/skull defects and under-
lying sagittal sinus (Figure 4A-C). Ultrasound is recom-

mended to look for associated visceral malformations 
[39-42]. The larger defects are invariably associated with 
a skull defect, with the dura and brain covered only by an 
ulcer or a thin membrane (Figure 4D) [29,31,32,37].

Arachnoid granulations

Arachnoid granulations, also known as Pacchionian gran-
ulations, are focal invaginations of the leptomeninges into 
the venous sinuses [43,44]. Their most common location 
is within the superior sagittal sinus, followed in decreasing 
frequency by the transverse and cavernous sinus [43-45]. 
Arachnoid granulations increase in number and size with 
age and are frequently found at venous entry sites into the 
sinus [44-48]. 

CT demonstrates granulations as cerebrospinal fluid 
(CSF) density invaginating into the calvarium or a dural 
venous sinus resulting in a filling defect (Figure 5). They 
may be confused with venous sinus thrombosis but are 
usually differentiated by their classic location and round, 
well-defined shape. Similarly, on MRI, signal character-
istics are those of CSF (low T1, high T2, and suppressed 
on FLAIR).

Arachnoid cysts

Arachnoid cysts are congenital intra-arachnoidal lesions 
filled with CSF, which do not communicate with the ven-

Figure 3. Four-month-old girl with frontonasal dysplasia. A, B) Axial head computed tomography images in brain and bone windows show midline nasal 
and frontal calvarial defects with associated telecanthus. C) 3D reformat and (D) sagittal T1-W images show a large defect in the frontal calvarium
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Figure 4. A) Coronal, B) axial head computed tomography angiography show a large left paramidline skull defect (white arrow) and an associated scalp 
defect, where the superior sagittal sinus abuts and extends to the cutaneous surface (black arrow). C) 3D reformat shows the skull defect and scattered 
small parietal foramina. D) Clinical image of scalp ulcer/wound

A B C D
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tricles. They are most frequently unilocular, well-margin-
ated lesions moulded by nearby structures. Arachnoid 
cysts are common, representing 1% of all intracranial 
masses [49]. Most cysts are supratentorial in location, 
with 50-60% in the middle cranial fossa, anterior to the 
temporal lobes. Other common locations include the su-
prasellar cistern and posterior fossa (10%), particularly 
in the cerebellopontine angle cistern. Arachnoid cysts 
are usually stable in size, however cases of enlargement 
as well as resolution, have been published [50-54]. They 
can present from small and incidental to very large with 
mass-effect on the underlying brain [49,51,52].

Imaging demonstrates a well-delineated extra-axial 
cyst with CSF density/signal that can result in a mass ef-
fect on the adjacent brain, with scalloping of the inner 
table (Figure 6). Classically, no identifiable internal archi-
tecture or enhancement is seen. Rarely, high-protein con-

tent or haemorrhage within the cyst may render diagnosis 
rather difficult [49,51,52].

Dermoid/epidermoid cyst

Dermoid and epidermoid cysts result from persistent ec-
todermal elements at sites of suture or neural tube clo-
sure, as well as diverticulation of the cerebral hemispheres 
[55,56]. Dermoids are composed of ectoderm and skin 
elements, whereas epidermoids contain exclusively ecto-
dermal elements. Both are most commonly seen in the 
midline, frontal, and temporal regions. 

CT appearances change depending on constitution, 
with fatty density with dermoids and fluid density with 
epidermoid cysts. Similarly, MRI signal (Figures 7 and 8) 
depends on the content, ranging from a fluid signal in an 
epidermoid cyst to a fat-containing signal in a dermoid. 

Figure 5. A, B) Sagittal and (C, D) axial head computed tomography images on brain and bone window show a prominent arachnoid granulation with 
scalloping of the calvarial inner table

A

C
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D

Figure 6. Five-year-old girl with multiple arachnoid cysts and clinically visible swelling. A, B) Axial head computed tomography images show extra-axial 
cerebrospinal fluid (CSF) signal lesion in the left temporal region with scalloping of the inner table of the skull and bulging overlying skull. C, D) Axial 
T2-W images show extra-axial CSF signal cystic lesions exerting mild mass effect on the adjacent brain parenchyma and skull

A B C D
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Epidermoid cysts characteristically have high signal on 
the diffusion-weighted sequence [57,58]. On ultrasound, 
dermoid cysts demonstrate hypoechogenic internal struc-
ture and hyperechogenic surrounding wall with no active 
blood flow.

Parietal/bi-parietal foramen

Parietal foramina represent a disorder of calvarial ossifi-
cation. At birth, either a large single midline or bilateral 
calvarial defects are present, with the brain covered by 
a dura, pericranium, and overlying scalp. Defects usually 
close in mid-childhood, leaving symmetrical foramina [59]. 

A familial incidence with autosomal dominant inheri-
tance has been identified with specific gene mutations 
discovered [60-62].

The pathology is believed to be benign; however, 
cross-sectional imaging with CT and MRI has uncovered 
associated intracranial anomalies, particularly abnormal 
venous development. CT images demonstrate either a sin-
gle or paired rounded defect(s) at the level of the pari-
etal bone adjacent to the intersection of the sagittal and 
lambdoid sutures (Figure 9). Defects may be large and 
unified across the midline. MRI is the modality of choice 
for detecting associated venous, cortical, or meningeal 
abnormalities.

Figure 7. One-year-old male patient with epidermoid cyst. A) Frontal X-ray of the skull shows a well-demarcated lytic lesion with sclerotic borders involving 
the frontal bone at the midline. B-D) Axial T2, axial T1 post contrast, and sagittal T1 images show an oval shaped non-enhancing cystic lesion involving  
the frontal bone with expansion of the diploic space. E) Ultrasonography shows an oval shaped homogeneous lesion with hypoechogenic internal structure, 
hyperechogenic surrounding wall, and no obvious flow on colour Doppler
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Figure 8. Right periorbital dermoid cyst. A) Frontal X-ray of the skull shows an ill-defined lytic lesion involving the right temporal bone. B-E) Axial T1,  
T1 post contrast, T2 and T1 fat-sat post-contrast images, respectively, shows a fat-containing lesion expanding the right temporal bone with thin peripheral 
enhancement

A B C D E
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Encephalocele

Encephalocele is the herniation of intracranial tissue 
through a defect in the skull [63-65]. When they contain 
only meninges, they are called meningoceles, or menin-
goencephaloceles if brain tissue is also included. They 
are most commonly occipital in location (75%); 15% are 
frontoethmoidal and the remaining cases are basal [64]. 
Occipital encephaloceles may be seen with Chiari or Dandy- 
Walker malformations as well as callosal or migrational 
anomalies [66-68]. Frontoethmoidal encephaloceles known 
as sincipital encephaloceles are divided into nasofrontal, 
nasoethmoidal, and naso-orbital types [69-71]. The intrac-
ranial extent of the majority of frontoethmoidal encepha-
loceles lies at the foramen caecum [64,65]. Basal encepha-
loceles are not generally visible externally, although they 
may manifest as a mass in the oropharynx or nasopharynx. 

Atretic encephaloceles are also included in the dif-
ferential of skin-covered midline scalp masses. The most 
common location is parietal, and they usually contain 
meninges and neural rests [72]. A vertically positioned 
straight sinus is commonly associated with this entity 
[72,73]. Atretic encephaloceles contain a fibrous stalk at 
their base that connects to the dura mater. 

MRI is the modality of choice for determining the 
contents of an encephalocele preoperatively. CT is help-
ful to define the bone anatomy; however, the intracranial 

extent is best seen with MR (Figures 10, 11). Occipital 
encephaloceles commonly involve the cerebellar or cer-
ebral hemispheres and may involve the dural venous 
sinuses.

Craniosynostosis: Crouzon syndrome

Craniosynostosis was first described by Virchow in 1851 
[74,75] and is defined as a premature fusion of the cranial 
sutures that leads to characteristic abnormal morpholo-
gies of the cranium. Although craniosynostosis is seen 
in different syndromes, single sutural synostosis is most 
commonly an isolated finding [76,77]. 

Crouzon syndrome (CS) is an autosomal dominant 
condition, resulting from mutations in the FGFR-2 gene 
on chromosome 10q25-q26 [78,79]. It is characterised by 
the presence of craniosynostosis, midface hypoplasia with 
“beaked” nasal tip, midface retrusion, mandibular prog-
nathism, and disproportionately striking exorbitism. Most 
commonly, patients with CS show bicoronal synostosis. 
The key finding in patients with CS is the notable absence 
of hand anomalies that affect other groups of patients 
with similar skull deformities. CT demonstrates diffuse 
morphological abnormality of the inner table of the skull, 
with areas of discontinuation in the calvarium, while 3D 
CT image reformations provide superior evaluation of su-
tures and preoperative planning (Figure 12).

Figure 9. Ten-year-old boy with right parietal foramen. A) Axial computed tomography, B) T2-W, and (C) coronal Gd-enhanced T1-W show a prominent 
right parietal foramen (arrows)

A B C

Figure 10. Occipital encephalocele. A) Sagittal T1-W and (B) axial T2-W images show a small midline defect with a herniated sac containing cerebrospi-
nal fluid and a small portion of the cerebellar parenchyma (arrow). Naso-ethmoidal encephalocele. C) Axial non-enhanced computed tomography and  
(D) sagittal T1-W images show midline brain tissue mass protruding through a defect in the cribriform plate as well as agenesis of the corpus callosum
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Sphenoid wing dysplasia

Sphenoid dysplasia is a major but not pathognomonic 
feature of neurofibromatosis type 1 [80]. Imaging find-
ings include middle cranial fossa enlargement, anterior 

displacement of the greater sphenoid wing (often in as-
sociation with a temporal arachnoid cyst), widening of 
the superior orbital fissure, and elevation of the lesser 
sphenoid wing. There is also secondary ipsilateral orbital 
enlargement (Figure 13) [81].

Figure 11. Atretic parietal encephalocele. A-C) Sagittal T1-W, post Gd T1W, T2W, and (D) axial T2W images demonstrate a slightly off-midline hyperintense 
T2 herniation sac through a parietal defect (arrows) and a persistent embryonic falcine sinus (arrow head) directed at the atretic cephalocele. Also note the 
absence of a straight sinus. E, F) Colour Doppler US images demonstrate the herniated sac containing fibro-fatty tissue

A B
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Figure 12. Five-month-old boy with Crouzon’s syndrome and skull abnormality. A, B) Axial head computed tomography images on bone window show 
diffuse morphological abnormality of the inner table of the skull with areas of discontinuation in the calvarium. C) 3D reformat shows the gross bony 
abnormality and foramina. VP shunt in place for hydrocephalus decompression

A B C

Figure 13. Twelve-year-old girl with neurofibromatosis type I and sphenoid wing dysplasia. A) Axial T2-W and (B) T1-W images show absence of the right sphe-
noid wing, expanded middle cranial fossa, and displaced contents with resultant right proptosis. C) Sagittal T1-WI shows absence of sella and sphenoid wing

A B C
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Traumatic

Cephalohematoma

Cephalohematoma is defined as a subperiosteal haemor-
rhage confined by cranial sutures, whereas caput suc-
cedaneum crosses sutures and is mostly located at the 
vertex. A subgaleal haematoma is below the aponeuro-
sis covering the scalp and is not confined by suture lines 
(Figure 14). Cephalohematomas occur in 1-2% of vaginal 
deliveries and 3-4% of assisted deliveries (vacuum or for-
ceps) [82]. Chronic cephalohematomas calcify and have 
a typical clinical and radiologic appearance (Figure 15) 
[83]. They are usually of no clinical significance and do 
not require treatment, with resolution occurring by weeks 
to four months of age. They may present a challenge for 
clinicians because they can become infected, requiring 
drainage and antibiotic therapy [83,84]. 

On cross-sectional imaging, acute cephalohematomas 
are crescent-shaped collections adjacent to the outer table 

of the skull. Chronic cephalohematomas may calcify and 
appear hyperdense on CT [82,83]. Evolutionary changes 
of cephalohematoma may demonstrate erosive chang-
es and periosteal reaction that can be worrisome in the 
absence of a clinical history. MRI signal intensity follows 
that of subacute haemorrhage but may change with the 
stage of haemorrhage.

Infection

Osteomyelitis

Skull osteomyelitis in the paediatric population is most 
commonly a complication of a skull wound following  
either surgery or trauma. It may also occur secondary to si-
nus or ear infection, at the level of the frontal and parieto- 
temporal bones, respectively. In addition, it may result 
from a complication of an infected scalp wound from the 
use of forceps or be secondary to intrauterine monitoring 
(Figure 16A). 

Figure 15. Five-month-old boy with enlarging right skull “mass”. A, B) Axial head computed tomography in soft tissue and bone windows, respectively, 
shows a peripherally ossified subperiosteal haematoma. C) 3D surface rendered image demonstrates a large ossified lump in the area of concern

Figure 14. Newborn with both cephalohematoma and subgaleal fluid collection. A, B) Coronal T1- and flair-weighted images shows the presence  
of a cephalohematoma and subgaleal fluid collection respectively (arrows)

A B C
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Subperiosteal abscess

Pott puffy tumour represents a subperiosteal abscess of 
the frontal bone with frontal osteomyelitis. The infection 
can spread directly through the thin bone wall of the si-
nus or through the network of small veins that drain its 
mucosa (Figure 16B) [85]. Frontal sinusitis and trauma 
are the most common causes of this condition. The most 
common causal organisms are streptococci, staphylococci, 
and anaerobic bacteria [85,86]. 

Contrast-enhanced CT or MR imaging is needed to 
evaluate for possible intracranial complications such as 
epidural/subdural empyema, meningitis, intraparenchy-
mal abscess, and dural venous sinus thrombosis. Subtle 
intracranial involvement is more easily seen in MR im-

aging. In the scalp, rim enhancement may be noted when 
an organised fluid collection is present. Surgical drainage 
remains the mainstay of therapy.

Benign neoplasia

Osteoma

Osteomas are uncommon in children, but the most com-
mon benign bony tumour in adults [87]. Skull lesions 
often present as a painless lump, while paranasal sinus 
lesions present with sinusitis or exophthalmos. Conven-
tional radiographs demonstrate a well-circumscribed 
hyperostotic lesion (Figure 17A), which can be further 
characterised by CT (Figure 17B-D). Multiple lesions 

Figure 16. A) Two-month-old baby boy with MRSA osteomyelitis of skull and scalp abscess. Left: Axial head computed tomography shows a mixed hyper-
dense lesion overlying and expanding the right lambdoid suture. Right: Post Gd T1-W image shows enhancing soft tissue with intracranial extension and 
dural thickening/enhancement (black arrow). B) 16-year-old male with acute sinusitis and Pott’s puffy tumour. Left: axial T2-W and right: Gd-enhanced 
T1-W images demonstrate peripherally enhancing subgaleal abscess collections with soft tissue swelling and rim-enhancing bifrontal epidural abscesses 
(white arrow) with associated dural thickening and enhancement

A
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are seen in Gardner’s syndrome or hereditary polyposis 
syndrome. Prognosis is excellent with local resection.  
The differential diagnosis includes fibrous dysplasia and 
sessile osteochondroma.

Lipoma

Lipomas are benign tumours consisting of mature fat cells. 
They are well-demarcated masses of fat density (CT) and 
signal (MRI), with drop of signal on fat-saturated sequenc-
es (Figure 18). The presence of soft tissue enhancement 
should raise concern for liposarcoma. The differential 
diagnosis of fat-containing lesions of the skull includes pri-
marily dermoid and teratoma.

Myofibroma

Infantile myofibromatosis is a rare mesenchymal disorder of 
childhood, defined by the presence of tumours in the mus-
cle, skin, bone, viscera, and subcutaneous tissue [88-90]. 
It represents the most common fibrous tumour of infan-

cy [91]. The disease is divided into two groups: solitary, 
which is the most common, and multicentric. 

On imaging, bone lesions are round, 1-3 cm in size, 
well-defined lytic areas with or without a sclerotic rim 
[91-94], and they most commonly involve the temporal 
and parietal bones [95,96]. On CT, the lesions appear 
hypodense or isodense to the brain, and enhancement 
may be marked and homogeneous or heterogeneous 
[95]. On MRI, they are hypointense/isointense on T1-, 
and hyperintense or isointense on T2-weighted images, 
with marked enhancement after contrast administration 
(Figure 19). The differential diagnosis of a similar-look-
ing calvarial lesion includes Langerhans cell histiocyto-
sis, osteomyelitis, metastasis, osteoblastoma, epidermoid 
cyst, haemangioma, fibrous dysplasia, fibrosarcoma, and 
intraosseous meningioma [92,96-100].

Intraosseous haemangioma

Intraosseous haemangiomas constitute 1-5% of calvarial 
neoplasms in the paediatric population [101,102]. Two 

Figure 17. Thirteen-year-old male patient with osteoma of the right occipital bone. A) Lateral projection X-ray of the skull shows a well-defined focal 
bulging mass at the level of the occipital bone (white arrow) seen as an ovoid dense sclerotic lesion related to the outer table of the right occipital bone on 
the axial head computed tomography images (B-D)

A B C
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Figure 18. A, B) Axial non-contrast computed tomography of the head in the soft tissue and bone window shows the presence of a small homogenous 
lesion of fat density overlying the left occipital bone
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Figure 19. A) Axial T2-W, B) Post-Gd T1-W, and (C) sagittal fat-suppressed T2 images show a right occipital subgaleal mass (arrows) with isointense T2 signal 
and no contrast enhancement. Pathological proven scalp myofibroma

A B C

forms exist: an uncommon globular form occurring at the 
skull base, and a more frequent sessile form, within the cal-
varium [103]. The globular subset more often have intracra-
nial extension, which may result in neurological symptoms. 

Computed tomography and conventional radiograph-
ic imaging typically demonstrate a well-defined osteolytic 
lesion involving the diploic space expanding the outer ta-
ble with a sunburst or honeycomb trabecular pattern. Per-
iosteal reaction is rare [104]. MRI can depict the vascular 
channels and can clearly define the extent of the lesion 
and its relationship to adjacent neurovascular structures 
(Figure 20) [105]. After contrast administration, haeman-
giomas show diffuse and heterogeneous enhancement 
[106]. Occasionally, a haemangioma may become aggres-
sive, with an intra- or extracranial soft-tissue component 
that may simulate a malignant neoplasm [106,107].

Infantile haemangioma

Infantile haemangioma is the commonest vascular ne-
oplasm of infancy, with a prevalence of about 2-3% 
and a female predominance [108-111]. They are most 
commonly located in the face and neck (60% of cas-
es), followed by the trunk (25%) and extremities (15%) 
[108,110,112]. They are usually not visible at birth but 
show rapid growth during the first few weeks, becoming 
evident by three months of age. No treatment is required 
because of spontaneous involution; however, treatment 
may be needed if the haemangioma is symptomatic or oc-

Figure 20. Eighteen-year-old male patient with intraosseous haemangioma. A) Axial head computed tomography shows a well-defined osteolytic lesion 
with a characteristic sunburst pattern at the vertex. B-D) Axial T2 and axial and sagittal T1 gadolinium enhanced images shows predominantly high  
T2 signal intensity lesion showing diffuse homogenous enhancement at the level of the left parietal bone

A B C D

curs in regions where there is secondary loss of function 
or aesthetic impairment. 

The diagnosis is made clinically; however, imaging, 
specifically MRI, may be required in deep haemangiomas 
with normal overlying skin, when evaluation of extension 
is necessary for therapeutic planning.

MR imaging features change with the different evo-
lutionary stages. During the proliferative phase, they are 
well-delineated lesions with high signal on T2- and iso-
intense signal on T1-weighted images, with early avid en-
hancement and presence of flow-voids (Figure 21) [108]. 
Perilesional oedema should not be seen [113]. The feature 
distinguishing an infantile haemangioma from an AVM 
is the absence of arteriovenous shunting [114]. During 
the involuting phase, increasing amounts of fat replace 
the tumour, seen as foci of increased signal intensity on 
T1-weighted images with a decrease in the degree of en-
hancement [108]. If perilesional oedema is present, other 
tumoural lesions (sarcoma, neuroblastoma, haemangioper-
icytoma, fibrosarcoma, rhabdomyosarcoma) must be ruled 
out [113].

Malignant neoplasia

Langerhans cell histiocytosis

Histiocytosis is characterised by the proliferation of Langer-
hans cells, a type of histiocyte from the monocyte-mac-
rophage cell line [115]. Langerhans cell histiocytosis (LCH) 
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Figure 22. Seven-year-old boy with Langerhans cell histiocytosis. A) Lateral skull plain radiograph shows a single sharply marginated (bevelled edges) lytic 
calvarial lesion. Subsequent magnetic resonance imaging. B, C) Pre- and post-Gd T1-WIs show a heterogeneously enhancing intradiploic calvarial mass 
extending across the inner and outer tables

A B C

is subdivided into three types based on the organs involved, 
patient’s age at onset, and clinical course: localised, chronic 
disseminated, and fulminant-disseminated. Localised LCH 
is the mildest and most common form and involves either 
bone or lung, with a peak prevalence between one and four 
years of age and a slight male predilection [116]. Localised 
lesions in this age present as painful lumps and are usually 
clinically misdiagnosed as trauma or infection [117]. Head 
and neck manifestations of LCH occur in the majority of 
children, with the skull and skin frequently involved [117-
120]. The calvaria is the most common location of osseous 
LCH [121]. Other commonly involved sites include the or-
bit, maxilla, mandible, and temporal bone [122]. 

At radiography, bone lesions appear lytic, with either 
a well- or poorly-defined border without reactive scle-
rosis or periosteal reaction, and they are described as 
“punched-out” lesions [123]. Skull lesions typically have 
a bevelled-edge appearance due to asymmetric destruction 

of the inner and outer tables. On CT, they present as an en-
hancing soft-tissue mass with bone erosion. On MRI, they 
have low to isointense signal intensity on T1- and hyperin-
tense signal on T2-weighted images with diffuse enhance-
ment post contrast administration (Figure 22)[122]. Both 
CT and MRI are often required for follow-up of repair of 
bone-destructive lesions and resolution of soft-tissue mass-
es. Intracranial involvement is best seen with MR imaging.

Osteosarcoma

Osteosarcoma is the most common malignant tumour of 
bone, but it rarely occurs in the skull [124]. The mandi-
ble is the most common craniofacial bone affected. It may 
result from malignant degeneration of fibrous dysplasia.  
The tumours increase in size rapidly and commonly pres-
ent with pain and swelling. Gross total excision is thought 
to be the best treatment. 

Figure 21. Eleven-month-old boy with infantile haemangioma. A) Sagittal T1-W, B) axial T2-W, post-Gd (C) axial, and (D) coronal T1-W images show  
a T2 hyperintense and avidly enhancing lesion arising from the frontal calvarium with central flow voids
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MRI and CT show bone growth with lytic areas and 
periosteal remodelling (Figure 23). No radiographic find-
ing is pathognomonic. Biopsy is required for definitive 
diagnosis.

Rhabdomyosarcoma

Rhabdomyosarcoma is the commonest soft tissue sarcoma 
in children [125]. The head and neck are the most com-
mon locations, particularly the anterior skull base (40%) 
and the orbit (25%) [125]. Symptomatology depends on 
tumour size and location. Imaging findings are non-spe-
cific and may be confused with other tumours. MRI is the 
technique of choice due to excellent soft tissue contrast 
and is primarily used to assess disease extension and aid 
in staging. It usually demonstrates heterogeneously en-
hancing soft tissue mass with bone destruction and bone 
remodelling (Figure 24).

Metastatic neuroblastoma

Neuroblastoma is the third most common malignancy in 
children, preceded by leukaemia and primary brain tu-
mours. They arise most commonly in the adrenal gland 
or less often along the sympathetic chain in the abdomen. 
Neuroblastomas are metastatic in up to 70% of patients at 
the time of presentation [126]. Metastatic cranial mani-
festations most often present as osseous lesions involving 
the calvaria, orbit, or skull base [127], with neuroblastoma 

Figure 23. Eighteen-year-old male with right parietal osteosarcoma. A) Contrast-enhanced head computed tomography shows a right parietal enhancing 
mass. B) Axial T1-W and (C, D) post-Gd T1-W images show an intensely enhancing extra-axial mass with extracranial (white arrows) and intracranial, 
extra-axial components. Central non-enhancing area is consistent with necrosis
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Figure 24. Three-month-old girl with right sinonasal embryonal rhabdomyosarcoma. A-C) Coronal and axial T1 fat-sat post-contrast and axial T2 fat sat 
images of the face, respectively, shows a heterogeneously enhancing mass centred at the level of the right maxillary sinus extending to the nasal cavity and 
masticator space with bone destruction as demonstrated on axial computed tomography post-contrast image of the face (D)
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being the commonest metastasis to the skull in this age 
group [128]. 

At imaging, metastatic lesions of the skull produce 
several radiographic findings: thickened bone, the so-
called “hair-on-end” periosteal reaction, lytic defects, 
and separation of sutures. The differential diagnosis of 
multiple lytic skull lesions in a child includes Langerhans 
cell histiocytosis, leukaemia, lymphoma, and sarcoma me-
tastases [127,129]. Neuroblastoma has a predilection to 
metastasise to the dura and tends to favour the external 
surface of the dura (Figure 25). The dura acts as a defence 
mechanism to direct invasion, with intraparenchymal 
extension rarely seen [126]. Neuroblastoma often metas-
tasises to the skull base and orbits in the late stages of 
the disease. Both LCH and metastatic neuroblastoma can 
involve the posterolateral part of the orbit [130].

Metastatic Ewing’s sarcoma

Ewing’s sarcoma (ES) is the second most common prima-
ry bone malignancy in children [131]. It can develop in 
any bone or tissue, but the most common location is long 
or flat bones. Primary ES of the skull is rare, with metas-
tasis to the skull being more common [132]. The clinical 
presentation is usually pain and swelling. The imaging 
appearance of these tumours is very variable, but they are 
usually poorly marginated, with an aggressive appearance 
and extension into adjacent soft tissues. They show intense 
and heterogeneous enhancement (Figure 26).
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Figure 25. Five-year-old girl with stage IV metastatic neuroblastoma to the calvarium. A) Axial contrast-enhanced computed tomography (CT) of the abdo-
men shows a bulky and partially-calcified right adrenal neuroblastoma. B) Axial head CT on bone window shows a destructive lesion within the diploic space 
in the left frontal calvarium with soft tissue components (arrow). C) Axial T2-W image shows corresponding full thickness skull defect and hyperintense signal
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Figure 26. Calvarial metastasis in a 15-year-old boy with history of Ewing’s sarcoma of the left distal ulna. A) Sagittal STIR of the left forearm shows  
the heterogeneously hyperintense primary tumour of distal ulna with associated soft tissue involvement. B, C) Pre- and post-Gd T1-WI demonstrate a de-
structive calvarial metastasis with heterogeneously iso/hypointense FLAIR signal and avid gadolinium enhancement. D) Sagittal Gd-enhanced T1-WI shows 
avid enhancement. E, F) Axial DWI and ADC map shows mild true diffusion restriction
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Vascular

Venous lakes

Transcalvarial venous channels consist of holes in the 
calvarium through which emissary veins pass, connect-
ing the dural venous sinuses with veins external to the 
skull. They usually present as serpiginous or linear lu-
cencies with sclerotic borders through the skull and are 
sometimes confounded with fractures or sutures [133]. 
When these veins are enlarged, they are known as venous 
lakes.

On CT imaging, they appear as round or oval lucent 
foci at the level of the inner table of the skull [134]. These 
show high signal on T2-weighted images and interme-
diate or low signal on T1-weighted images with marked 
enhancement after contrast administration (Figure 27).

Venous malformation

Venous malformations consist of a wide range of congen-
ital lesions which are clinically characterised by a soft and 
non-pulsatile bluish mass, occurring in the head and neck 
in 40% of cases [135]. 
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Figure 28. Ten-year-old boy with large left parieto-occipital venous malformation with intracranial developmental venous anomalies. A) Axial T2-W and 
(B-D) post-Gd T1-W images show mixed T2 high signal lesion with corresponding intense contrast enhancement along left parietal calvarium (arrows in 
A and B) extending intracranially at occipital and suboccipital regions (arrowhead). Also noted is an associated complex intracranial developmental venous 
malformation with enlarged veins (arrow in C)
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Figure 27. Seventeen-year-old boy with multiple venous lakes. A) Axial T2-W show multiple hyperintense lesions (arrows) involving the diploic spaces  
of the calvarium. B, C) Pre- and post-Gd-enhanced T1-W images show peripheral delayed enhancement
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Magnetic resonance imaging is the best modality to 
define lesion size and extent. They are often hyperintense 
on T2-weighted sequence, with internal septation and 
variable enhancement (Figure 28). Phleboliths, appearing 
as focal signal voids, are a specific characteristic [136]. As 
a low-flow lesion, flow voids seen with proliferating hae-
mangiomas or high-flow arteriovenous malformations 
are not identified in venous malformations. Treatment 
typically involves some combination of sclerotherapy and 
surgical removal [135].

Post-operative

Post-operative intraosseous pseudomeningocele

Intradiploic pseudomeningocele are very rare post-opera-
tive or post-traumatic complications in paediatric patients 
[137-139]. They are characterised by a breach of the inner 
table with a tear of dura mater, with intradiploic accumu-
lation of CSF in a sac with a covering lined by arachnoid 
membrane. The time interval between trauma and diag-
nosis of post-traumatic intradiploic pseudomeningocele 
is variable, ranging from 10 months to 50 years [140-142], 
with the occipital region being the most common location.

On plain radiograph of the skull, they appear as an egg-
shell expansion of the diploic space with intact outer table. 

A CT scan best defines the extent of the bony defect and 
intactness of the outer table, with three-dimensional recon-
struction aiding in surgical planning (Figure 29). MRI is the 
modality of choice and helps in the diagnosis by excluding 
dermoid and epidermoid cysts [141]. They typically have 
signal intensities similar to CSF. The differential diagnosis 
includes leptomeningeal cysts (Figure 30), which result 
from diastatic fractures causing laceration of dura mater as 
well as the inner and outer tables [143-145]. 

Conclusions
Paediatric skull lesions often represent a diagnostic chal-
lenge to radiologists. However, if an appropriate imaging 
and clinically based approach is used, a definitive diagno-
sis is possible in the majority of cases. These lesions range 
from congenital, traumatic, infectious, and neoplastic to 
vascular. Many features of these lesions are important in 
management and may be discovered with proper imag-
ing. A variety of cross-sectional imaging methods are now 
available that help characterise these lesions and guide 
therapy.
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Figure 29. Fifteen-year-old girl with Chiari malformation, status post suboccipital craniectomy for decompression and a post-op intraosseous pseudomenin-
gocele. A) Axial head computed tomography shows an expansile fluid density intraosseous lesion separating the inner and outer table of the occipital 
calvarium. B) Axial T2-WI shows a suboccipital pseudomeningocele with cerebrospinal fluid signal and intraosseous extension. C) Coronal T1-W image 
shows changes of suboccipital craniectomy and pseudomeningocele (arrows)
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Figure 30. Companion case in an adult patient with history of prior trauma. A, B) Axial computed tomography (CT) images on bone and parenchyma 
windows show focal encephalomalacia of right frontoparietal lobe with cerebrospinal fluid (CSF) extending and expanding the right parietal bone fracture. 
Note the scalloping of the fracture margins. C) Coronal CT image shows the extent of encephalomalacia and extension of CSF through the skull defect
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