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Abstract
Purpose: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. 
This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, 
the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmenta-
tion of clinical target volume (CTV) in glioblastoma patients. 

Material and methods: In this study, the modified Segmentation-Net (SegNet) model with deep supervision and re-
sidual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain 
Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume 
(GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform 
the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans 
were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was 
evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff 
distance. The impact of auto-segmented CTV definition on dosimetry was also analysed. 

Results: The proposed model achieved the segmentation results with a DSC of 89.60 ± 3.56% and Hausdorff distance 
of 1.49 ± 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between 
manually and automatically planned doses. 

Conclusions: The results of our study suggest that our CNN-based auto-contouring system can be used for segmenta-
tion of CTVs to facilitate the brain tumour radiotherapy workflow. 
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Introduction
Glioblastoma, grade IV glioma according to the World 
Health Organization classification, is the most common ma-
lignant tumour of the central nervous system in adults [1]. 
Imaging techniques such as computed tomography (CT) 
and magnetic resonance imaging (MRI) are routinely 
utilized for diagnosis, characterization, surveillance, and 

post-treatment management of patients with glioblastoma 
tumours [2,3]. However, MRI is the gold standard imaging 
technique for visualizing glioblastoma tumours owing to 
its superior soft tissue contrast compared to a CT scan [4]. 
Over the last 3 decades, MRI has been used as the stan-
dard of care radiographic characterization of Glioblastoma 
tumours. Therefore, the MR scan plays a central role in 
evaluating glioblastoma. Multiple MRI sequences such 
as T1-weighted (T1w) and contrast-enhanced (T1CE),  
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T2-weighted (T2w), and T2-fluid-attenuated inversion 
recovery (T2-FLAIR) sequences can be simultaneously 
utilized for the segmentation of glioblastoma tumours [5]. 
Today, the standard treatment for glioblastomas is a com-
bination therapy including surgery, radiotherapy, and 
chemotherapy [6]. External beam radiotherapy (EBRT), 
as part of the multidisciplinary treatment, plays a critical 
role in the treatment of patients with glioblastoma tu-
mours, and glioblastoma is one of the major indications 
for EBRT [7,8].

Delineation of target (i.e. tumour) volumes and organs 
at risk (OARs) is one of the most tedious, challenging, and 
time-consuming tasks in the radiotherapy treatment plan-
ning process [9]. In clinical practice, this procedure is still 
done manually in 2-dimensional (2D) slices of CT or MR 
images by radiation oncologists. However, manual segmen-
tation is still considered the gold standard in radiotherapy 
planning – manual contouring of brain tumours suffers 
from high inter-rater and intra-rater variability owing to 
human error, observer bias, and varying experience of the 
radiation oncologists [10-12]. In this regard, automated 
contouring methods can be very useful for radiotherapy 
target volume delineation. Over the last decades, numerous 
automated machine learning algorithms have been devel-
oped for brain tumour segmentation [13] to substantially 
limit the time for target volume definition and to introduce 
a more consistent and reproducible standard for volume 
definition (i.e. avoiding the intra- and inter-observer varia-
tions) [14]. Currently available machine learning-based 
auto-segmentation methods can be mainly categorized 
into traditional methods and deep learning methods 
[15,16]. Deep learning, a branch of machine learning, with 
multi-layered neural networks is capable of processing large 
datasets to provide automated solutions without the need 
for hand-crafted features [9]. Deep convolutional neural 
networks (CNNs), as a deep learning method, outperform 
alternative methods, i.e. classic machine learning methods, 
in a wide range of applications [17-20], including medical 
image segmentation [21,22]. Therefore, deep CNNs can be 
considered as the state-of-the art computer-assisted method 
for segmentation.

To date, although a number of studies have developed 
deep learning-based methods for the automatic segmen-
tation of brain tumours, the main focus of most research 
endeavours was on using CNN-based networks for auto-
mated delineation of the gross tumour volume (GTV) on 
MR images [23-26]. Hence, the purpose of this study was 
to develop a tool for automatic segmentation of clinical 
tumour volume (CTV) in radiotherapy for patients with 
Glioblastoma on brain MRI using a deep CNN model. 
We trained our 2D deep CNN-based MRI-based auto-
contouring algorithm on the Multimodal Brain Tumour 
Segmentation (BraTS) 2019 challenge dataset for GTV 
segmentation and assessed its performance using the 
same dataset. This pre-trained CNN model using BraTS 
2019 dataset was fine-tuned with an independent clinical 

dataset to perform the CTV segmentation. Furthermore, 
we also assessed the algorithm on the independent clinical 
dataset, and the agreement between automated segmen-
tations and radiation oncologist contours as the ground 
truth was assessed using the dosimetric and geometric 
metrics. The novelty of this study lies in the following:  
(1) modification of the SegNet architecture using deep su-
pervision and residual blocks on skip connections, (2) CTV 
segmentation of glioblastoma tumours, and (3) generation 
of segmentation masks directly on CT images under the 
guidance of MR images.

Material and methods

Dataset

In this study, the primary experimental data used are from 
the BraTS 2019 challenge dataset [5,27,28]. The BraTS 
2019 training data consists of 259 multi-modal brain MR 
studies, consisting of glioblastoma patients. There are  
4 brain MRI sequences for each sample, which include T1w, 
post-contrast T1w (T1ce), T2w, and FLAIR sequences. 
These MR images have the size of 240 × 240 × 155 and 
resolution of 1 × 1 × 1 mm3. All MRI images have been 
segmented manually by experts into 4 main classes (i.e. 
enhancing tumour [ET], necrosis and non-enhancing  
tumour [NEN], oedema [OD], and healthy tissue), and 
experienced neuroradiologists approved their annota-
tions. Each tumour was segmented into oedema, necrosis, 
and non-enhancing tumour and active/enhancing tu-
mour. Herein, only T1 and T1c MRI sequences on the 
tumour core sub-region (i.e. ET + NEN) were used. 

In this work, a total of 80,290 (= 259 volumes × 155 slices 
per volume × 2 different sequences) sets of glioblastoma 
slices were extracted from the BraTS 2019 dataset. We per-
formed our experiments on the BraTS 2019 training dataset 
in which 80% were used for training, 10% for validation, 
and 10% for testing. Moreover, an independent clinical da-
taset from Imam Khomeini Hospital Complex (Tehran, Iran) 
was also used to evaluate the performance of the proposed 
method. This independent clinical dataset contained both 
CT and MRI scans of 52 subjects with glioblastoma (age  
> 18 years) treated with 3-dimensional conformal radiothe-
rapy (3DCRT). Figure 1 gives an overview of the approach 
used for the CTV segmentation of glioblastoma.

Data preprocessing and augmentation 

In this stage, a set of preprocessing on MR images was 
implemented, which included skull-stripping, resizing to 
256 × 256, normalization of pixel values to a range of 0 and 
1, and volume clipping. In this study, data augmentation 
methods including flipping left and right and brightness 
tuning were also used. Moreover, brain pixel intensities 
were clipped with a window of [1-99%]. All the pixel in-
tensities in all images were normalized into unit variance 
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and zero mean. During training process, elastic deforma-
tion with a probability of 30% was applied to the images.  
On the independent clinical dataset, we applied coach 
cropping. 

Convolutional neural network model

In this study, we applied a modified version of the se-
mantic segmentation (SegNet) model, a deep, fully CNN 
architecture, which was originally proposed by Badrina-
rayanan et al. [29] for semantic pixel-wise segmentation.  
The SegNet model structure consists of an encoder 
network and a corresponding decoder network, fol-
lowed by a final pixel-wise classification layer. The en-
coder network in SegNet has 13 convolutional layers, 
which are identical to the first 13 convolutional layers 
in VGG16 [30-32]. In the SegNet architecture, the fully 
connected layers of VGG16 were removed, and there-
fore the network parameter is significantly decreased 
and easier to train than many other recent models.  
The decoder network is considered as the key constitu-
ent of the SegNet architecture, which consists of a hier-
archy of up-sampling decoders – one corresponding to 
each down-sampling encoder. Therefore, the decoder 
network also has 13 layers. In the SegNet model, decon-
volution layers are not applied for up-sampling. Instead, 
the proper decoders use the max-pooling indices taken 
from the down-sampling path to up-sample the input 
feature maps. To overcome the gradient vanishing prob-
lem and reduce the time of convergence process, a deep 
supervision is used in the decoder side. Deep supervi-
sion leads to the generation of multiple segmentation 
maps at various resolution levels. In addition, deep su-
pervisions act as strong regularizations for pixel classi-
fication accuracy and to learn critical texture features.  

The SegNet architecture employs skip connections to for-
ward the feature maps from the encoder to the decoder 
network for better reconstruction at the network output. 
However, distinguishing between the useful information 
required for transferring from the encoder to the de-
coder blocks and the non-useful information is difficult.  
To resolve this issue, 3 residual blocks with a group nor-
malization layer were applied to provide the global con-
text of high-level features to assist the low-level features to 
obtain class category localization. In the end, the soft-max 
layer, as the final layer, classifies each pixel independent-
ly using the features input by the final decoder output.  
The network architecture used to segment clinical target 
volume of glioblastoma patients is shown in Figure 2. 

Training

Initially, the SegNet model was trained on the BraTS 2019 
training dataset for the gross tumour volume (GTV) segmen-
tation of glioblastoma tumours. In this study, an independent 
clinical dataset consisting of CT and MRI scans from 52 glio-
blastoma patients was used, in which CTV contours of glio-
blastoma tumours were delineated on CT with guidance of 
MRI scans. Out of 52 glioblastoma patients, 37 were used for 
fine-tuning the trained network in the previous step, while 
the remaining 15 were used to evaluate the performance of 
the model. This independent clinical dataset was used to fine-
tune the network architecture trained on the BraTS 2019. In 
other words, network fine-tuning was performed for CTV 
contours. In the fine-tuning step, to have the CT mask as the 
network output, both CT and MRI scans were used as input 
data and the corresponding CT masks were used as output 
labels. As a result, no CT/MRI image registration was applied 
for CTV contouring, which reduces contouring error. Dice 
loss as the loss function was adopted. We optimized Dice 

Figure 1. An illustration of the workflow used for the CTV segmentation of glioblastoma
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loss by the Adaptive Moment Estimation (Adam) optimizer, 
and utilized the initial learning rate of 0.01, batch size of 32, 
and epoch value of 200. Furthermore, a learning rate sched-
uler was used to adjust the learning rate during the training 
process by decreasing the learning rate after a set number  
of training epochs. We also applied data augmentation  
methods and a probability map. Our framework was imple-
mented with the PyTorch framework and Torchvision library. 
All the experiments were conducted on the hardware of 
NVIDIA Tesla p100 GPU and 8 GB RAM. The training time 
of the SegNet architecture was about 13 hours. 

Treatment planning

To investigate the impact of CNN-based contouring inac-
curacies on dose-volume parameters, such as minimum, 
maximum, and mean dose of the CTV (Dmin, Dmax, Dmean, 

respectively) and dose to 98% of the CTV(D98%), treat-
ment plans based on manual contours were gene rated. 
Thus, 15 glioblastoma patients were retrospectively in-
cluded in this work, as stated earlier. The retrospective 
T1w pre-treatment MR images and CT scans were used. 
The patients were scanned using a Siemens SOMATOM 
Sensation 16-Slice CT-scanner with a slice thickness of  
3 mm. The patients were immobilized using a head mask. 
MR images were acquired on a GE 3.0 Tesla Discovery 
MR 750 scanner (GE Healthcare, IL, USA) using the head 
coil. Both CT and MRI images were imported into Eclipse 
v.13.0 (Varian Medical System Inc, Palo Alto, CA, USA) 
treatment planning software (TPS). An experienced ra-
diation oncologist delineated CTV on post-contrast T1w 
MRI images. The CT/MRI brain registration was per-
formed within the Eclipse TPS. Also, the auto-generated 
contours from SegNet architecture were transferred to 

Figure 2. Illustration of the network architecture. Solid blue boxes represent the convolution blocks. The corresponding number of feature maps are shown 
on the top of each box
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the TPS to compute the above-mentioned dose-volume 
parameters and to compare them with the correspond-
ing parameters derived from manual delineated contours, 
as the ground truth. All 3DCRT plans were generated 
in the Varian Eclipse TPS, using the AAA algorithm.  
All patients were treated with 3DCRT using a 6 MV 
photon beam (Varian Clinac-ix, Varian Medical System 
Inc, Palo Alto, CA, USA) with multi-leaf collimators.  
The prescription dose was 60 Gy in 30 fractions based on 
the ESTRO-ACROP guideline [27]. 

Evaluation metrics

In this study, 15 patients from the independent clinical 
test dataset were applied to assess the segmentation per-
formance of the proposed model. The Dice similarity co-
efficient (DSC) and Hausdorff distance were employed to 
compute the geometric discrepancies between the manual 
delineated and auto-generated contours. The Dice score 
computes the overlap between the manual segmentations 
as the ground truth and the predicted contours. The Haus-
dorff distance evaluates the maximum distance between 
the surfaces of 2 contours. A smaller Hausdorff distance 
indicates lower discrepancy between 2 different segmen-
tations. Also, the dosimetric discrepancies between the 
manual segmentations as the gold standard and auto-
generated contours were evaluated using dose-volume 
parameters such as Dmin, Dmax, Dmean, and D98% for the CTV. 

Statistical analysis

Statistical analysis was conducted using SPSS 22.0 soft-
ware (SPSS, Chicago, Illinois). The normality of data 
distribution was investigated using the Kolmogorov–
Smirnov test. The paired sample t-test was used to evalu-
ate the level of significance of the measured parameters. 
A p-value ≤ 0.05 was considered statistically significant.

Results
The SegNet architecture achieved a Dice score of 88.6% 
for the tumour core class on selected test set the BraTS 
2019 dataset. The segmentation using modified SegNet 
took about 100 s for an input CT images (i.e. approxima-
tely 120-150 slices). 

Figure 3 illustrates a comparison of manual versus au-
tomatic segmentation of CTV for 15 glioblastoma patients 
which used as the testing dataset in this study. As shown 
in Figure 3, most deep learning-based auto-segmented  
volumes are smaller than the expert radiation oncolo-
gist volumes. The mean ± standard deviation (SD) CTV 
volumes segmented manually and by the modified Seg-
Net model were statistically significantly different: 73.5  
± 48.3 cc and 63.0 ± 38.2 cc, respectively (p = 0.004). Axial 
T1w MRI images of a representative case with manually 
and automatically delineated contours of the CTV on the 

external testing dataset are shown in Figure 4. Also, Fig-
ure 5 presents the CTV volumes of automatic and expert 
segmentations as the ground truth on the different views 
of CT images of 3 patients chosen randomly from the ex-
ternal testing dataset (n = 15). 

Table 1 summarizes the DSC and Hausdorff distance 
between manually and automatically delineated contours 
of the CTV on the 15 external CT scans. The mean ± SD 
DCS and Hausdorff distance were 89.6 ± 3.56 % and 1.49 
± 0.65 mm, respectively. 

Table 2 lists the dosimetric parameters of the modified 
SegNet model and the manual contours for the clinical 
dataset. As shown in Table 2, a statistically significant dif-
ference was found for the Dmin and Dmax of different treat-
ment plans based on manually and automatically delin-
eated CTV, whereas there was no significant difference in 
the Dmean and D98% of the CTV. 

Discussion 
Contouring of target volume and OARs is known as a cru-
cial step prior to radiotherapy treatment planning. It is 
well established that precise radiation treatment delivery 
depends heavily on accurate contouring of the target vol-
ume. The segmentation of glioblastoma tumours is dif-
ficult because of diffusion, poor contrast, and extension 
through the tentacle-like structures of these tumours [28]. 
In current clinical workflow, brain tumour segmentation 
is done manually, which is labour intensive and time-
consuming. Moreover, slice-by-slice manual brain tumour 
delineation is prone to intra- and inter-rater variabilities. 
Hence, in this study, a CNN-based auto-segmentation 
model for the CTV delineation of glioblastoma tumours 
was trained and evaluated. Herein, the geometric and 
dosimetric uncertainties of the modified SegNet archi-
tecture as a deep CNN-based auto-contouring tool for 
radiotherapy of glioblastoma tumours were evaluated. 
We compared the performance of a deep-learning-based 
auto-segmentation system against retrospective contours 
drawn by an experienced radiation oncologist on data 
independent from the training dataset. From our results, 

Figure 3. Comparison of the volumes of the structure of interest (i.e. CTV) 
segmented manually and by the modified SegNet model
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it can be seen that the modified SegNet architecture can 
generate near-perfect contours for the CTV, as compared 
to expert segmentation (reference contour). 

In this study, we trained the modified SegNet model 
on the BraTS 2019 training dataset for GTV segmen-
tation of Glioblastoma tumours. Then, the pre-trained 
CNN model was fine-tuned with an independent clini-
cal dataset to perform the CTV segmentation. In the 
process of fine-tuning, both CT and MRI scans were 

used as input data to provide a CT segmentation mask. 
Therefore, the value of our work lies in generating the 
predicted CT contour masks, which decreases CT/MRI 
image registration for the CTV contouring of Glioblas-
toma tumours, resulting in reduced contouring error.  
The proposed approach focuses on glioblastoma CTV 
segmentation on CT images based on guidance under 
MR images, because radiotherapy treatment planning is 
still mainly based on CT images in current clinical prac-

Figure 4. Examples of automatically generated contours (red) vs. ground truth (green) on axial view of T1cw magnetic resonance images of a representative case
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tice. Our method for the CTV delineation can be consid-
ered as an innovative and practical approach with prom-
ising results, especially in post-operative radiotherapy, 
because the GTV has been removed and the shape, ap-
pearance (e.g. the presence of oedema), and localization 
of glioblastoma tumours present remarkable variations, 
resulting in increasing intra- and inter-rater variability 
by manual segmentation. 

From our data, it is evident that there is a similarity 
between CNN-based auto-segmented volumes and expert 
contours, as ground truth, with a DSC of 89.6%. Using the 
DSC, the performance of the modified SegNet network was 
comparable between our independent clinical dataset and 
the BraTS 2019 dataset, which achieved a Dice score for 
tumour core class of 88.0%. One reason for the relatively 
high Dice score lies in using aggressive data augmentation, 

Figure 5. Axial, coronal, and sagittal (left to right) views of the contours generated with the SegNet model (red) and the ground truth (green) on computed 
tomography (CT) images of 3 representative cases
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which reduces false positives (i.e. the over-segmented vol-
ume in automatic segmentation contour but not included 
in manual segmentation), resulting in increasing the Dice 
score. All CTVs had a Hausdorff distance ≤ 2.94 mm, as 
shown in Table 1. Deep learning-based auto-segmented 
contours appear to have benefits over manual segmentation 
in terms of time-saving ability and mitigating inter-observ-
er variability, as demonstrated in several studies [9,33,34]. 
Herein, the modified SegNet model has great potential to 
significantly decrease the radiation therapy planning time, 
as compared to manual contouring. It should be noted that 
even with the implementation of fully automated contour-
ing systems in clinical practice, manual editing is still a ne-
cessity for patient safety. 

Numerous research groups have trained and tested 
state-of-the-art brain tumour segmentation models on the 
BraTS datasets [23-26]. The performance of our model 
was comparable with previous studies in terms of DCS. 
Of note, previous studies generated the GTV of brain tu-
mours, whereas the purpose of the present study was to 
automatically delineate the CTV contours of glioblastoma 
tumours. From a clinical point of view, the auto-generated 
CTV volumes cannot be compared to automated genera-
tion of a GTV. The GTV is defined based on medical im-
age morphology, whereas the CTV is a medical decision 
and is constructed based on guidelines considering clini-
cal experience and on tumour characteristics that are not 
quantifiable on imaging [14]. 

In the present study, we not only used the geometric 
metrics (i.e. DCS and Hausdorff distance) to evaluate seg-
mentation approaches, but also assessed the dosimetric 
impact on deep learning-based auto-segmented struc-

tures versus radiation oncologist delineated structures. 
However, the goal of evaluating this CNN-based auto- 
segmentation system is to apply it in radiotherapy treat-
ment planning processes. In radiotherapy planning, the 
difference in the target volume may result in remarkable 
dosimetric discrepancies. In a previous study it was re-
ported that even with volumetric differences between 
automatically and manually delineated volumes, dose-
volume parameters computed using automated segmen-
tations were comparable with the dosimetry based on 
manual segmentations as the ground truth [35]. Looking 
at Table 2, it is evident that although there was a signifi-
cant difference between automatically constructed and 
reference volumes, we observed no significant difference 
in Dmean and D98% of the CTV between automatically con-
structed and reference volume planned doses. However, 
there was a significant difference in Dmin and Dmax of the 
CTV between manually and automatically planned doses. 

A limitation of the present study was that the modified 
SegNet architecture was trained with a small number of 
subjects. Generally, deep leaning methods require a large 
amount of data for network training. Also, we evaluated 
deep leaning-based auto-segmented contours on a rela-
tively small number of patients from a single centre. Using 
a larger cohort from multi-centre datasets may better as-
sess the model’s robustness. Therefore, further study will 
be required to quantitatively compare deep leaning-based 
auto-segmented contours with manual contours from 
multi-centre independent datasets and determine the re-
producibility of our segmentations. Taken together, our 
auto-contouring system can be considered as a supportive 
tool for radiation oncologists, resulting in significant ben-
efits to radiotherapy planning workflow and resources. In 
other words, it is still necessary for radiation oncologists 
to review and edit the auto-generated contours to a clini-
cally acceptable standard prior to treatment planning. 

Conclusions 
A deep learning approach for automatic segmentation of 
the CTV in glioblastoma patients has been evaluated. We 
demonstrated that the modified SegNet architecture can 
be applied successfully to brain tumour segmentation. The 
results of our study suggest that our CNN-based auto-con-

Table 1. The Dice similarity coefficients (in percentage) and Hausdorff dis-
tance (in mm) between the ground truth and the automatically generated 
contours on the clinical test set (n = 15)

Patients Dice similarity coefficient (%) Hausdorff distance (mm)

1 91 0.80

2 88 0.93

3 90 1.20

4 89 0.84

5 92 1.14

6 90 1.67

7 89 1.74

8 93 1.66

9 96 1.52

10 83 0.89

11 81 1.93

12 90 2.82

13 92 2.94

14 89 0.89

15 91 1.37

Table 2. Comparison of the dose-volume parameters of the CTV for the 
automatically generated contours with the ground truth

Dose-volume parameters Manual SegNet p-value

Dmin (Gy) 53.8 ± 5.19 49.3 ± 5.63 0.012*

Dmax (Gy) 59.9 ± 7.28 65.6 ± 6.05 0.001*

Dmean (Gy) 57.2 ± 6.11 58.9 ± 6.39 0.238

D98% (Gy) 55.8 ± 5.63 58.3 ± 6.02 0.097
Dmin – minimum dose of CTV, Dmax – maximum dose of CTV, Dmean – mean dose of CTV,  
D98% – dose to 98% of CTV. 
*There is a statistically significant difference between the 2 methods (p-value < 0.05).
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touring system can be used for segmentation of the CTVs 
to facilitate the brain tumour radiotherapy workflow. Our 
model has great potential to eliminate the need for CT/MRI 
image registration for the CTV delineation of glioblastoma 
tumours, which can result in reduced contouring error. The 
CNN-based auto-segmentation system can be integrated 
into a radiotherapy workflow, resulting in remarkably 
shortened contouring time. Although the auto-generated 
contours are inferior to manually delineated contours by 
a radiation oncologist, the results are promising. 
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