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Abstract
Radiomics is a process of extracting many quantitative data obtained from medical images and analysing them.  
In neuroradiology it may be used to discover magnetic resonance imaging (MRI) features of glioblastomas that are 
impossible to identify by human vision alone. In this article, the authors describe the methodology and their first 
experience in creating a predictive model based on radiomic features obtained from the preoperative MRI examina­
tion of patients with glioblastoma. Early identification of malignant glioblastoma subtypes characterized by different 
prognoses and responses to treatment would greatly facilitate the implementation of targeted therapy, which appears 
to be the future of glioblastoma treatment.
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Introduction
Progress in imaging techniques has led to the deve­

lopment of new diagnostic imaging modalities and  
the production of vast amounts of data. At the same time, 
methods have been developed for selecting and process­
ing the obtained information into quantitative data and 
then analysing them automatically. This process has be­
come the basis of radiomics.

Visual analysis of images in daily clinical practice is 
based on qualitative descriptors (such as signal intensity, 
density, heterogeneity, and level of contrast enhancement) 
or simple quantitative characteristics (for example, di­
mension, volume, and number of lesions). The sensitivity 
and repeatability of such measurements are low, with high 
measurement errors, and they are strongly dependent on 
the experience of the evaluating radiologist. Computa­
tional methods eliminate these disadvantages with auto­
matic extraction of the right features from the imaging 
data and objectification of the analysis. 

Neurooncology is one of the specialties in which the 
advances in radiomics are most noticeable. Furthermore, 
researchers are working on targeted therapy for the treat­
ment of gliomas, especially glioblastomas (WHO grade 4). 
Precise selection of therapy based on quantitative fea­
tures extracted from magnetic resonance imaging (MRI)  
performed at the beginning of the diagnostic pathway 
could have a beneficial impact on these patients’ length 
of survival.

In this article, the authors describe the methodology 
and their first experience in creating a predictive model 
based on radiomic features obtained from the preop­
erative MRI examination of patients with glioblastoma.  
The endpoint of the model is a correlation between ra­
diomic features of glioblastomas (WHO IV) and progres­
sion-free survival. High-grade glioblastomas are the most 
common malignant brain tumours, and they represent 
one of the most serious challenges in modern neuroon­
cology [1]. It should be emphasized that current attempts 
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are being made to build an even more detailed predictive 
model correlating quantitative features with genetic test 
results (radiogenomics). 

Overview of the radiomics process
Several main stages can be distinguished in the process 

of creating a radiomics-based predictive model (Figure 1), 
which include the following:
1. Performance of magnetic resonance imaging (MRI) of 

the head in patients with glioblastoma, as in the pre­
viously approved protocol.

2. Identification of the region of interest (ROI) and segmen­
tation of the selected area. 

3. Preprocessing and extraction of the radiomic features of 
gliomas. 

4. Analysis of the acquired data based on machine learning. 
In the authors’ case, they supplemented the obtained 

database with clinical data, i.e. the time to recurrence.  
Finally, they expect to obtain a predictive model that, based 
on radiomic features of glioblastoma, gives the result of the 
individually predicted time to recurrence. 

Magnetic resonance imaging

MRI is the gold standard for the diagnosis and moni­
toring of gliomas [2]. The basic MR examination protocol, 
which consists of T1-weighted images (T1WI), T2-weighted 
images (T2WI), fluid-attenuated inversion recovery 
(FLAIR) sequence, and contrast-enhanced T1-weighted 
images (CE-T1WI), can be extended to provide additional 
sequences. The authors base their analyses on an extended 
study protocol with apparent diffusion coefficient (ADC) 
maps. These advanced MR imaging methods provide 
a better view of the tumour morphology and biology. 

Identification of a region of interest and segmentation

Malignant regions of tumour may be divided into sub-
compartments [3]. Enhancing tumours (ET) are represent­
ed on CE-T1WI. Necrosis (NCR) and non-enhancing tu­
mours (NET), which can be delineated based on CE-T1WI 
images and T2WI-FLAIR sequences, are commonly located 
in the central region of the tumour. 

Peritumoral oedema (ED), which represents both infil­
trative non-enhancing tumour and tumour-related oedema 
can be delineated as hyper-intense T2WI-FLAIR signals 
surrounding these lesions (Figure 2).

These regions can be segmented manually or automati­
cally. Currently, manual segmentation is considered the 
gold standard, with high accuracy [4]. However, several 
automated segmentation methods utilizing deep learning 
(DL) architectures exist. 

There is still a lack of consensus on the most appropriate 
ROI area. GBMs are known to extend beyond the border of 
the TC, affecting brain tissue even in distant areas. Exten­
sion of ED has been correlated with poor prognosis [5].

This is why the authors will base further steps in the 
development of the radiomic-base model on 2 segmented 
areas: 
- �the tumour core (TC), which is composed of NCR, ET, 

and NET, 
- �the whole pathology, which is TC and peritumoral oede­

ma (ED).

Extraction of radiomic features of glioblastoma

In this step, it is important to preprocess the data. Pre­
processing is the transformation of an initial image to en­
hance the image quality and increase the repeatability and 
comparability of statistical analysis [6]. This is particu­

Figure 1. Workflow for radiomic analysis
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larly important when examinations have been performed 
on different MRI scanners. In this step, the authors used 
normalization, resampling, and discretization to improve 
data quality. 

Algorithms that identify tumour size, shape, intensity, 
and heterogeneity are used to generate quantitative in­
formation for radiomic analysis. We can divide radiomic 
features into 3 main groups:

Morphological features

Morphological features describe geometric aspects of 
a region of interest (ROI). There are 16 main shape-based 

features for 3D ROI and 10 main shape-based features for 
2D ROI, such as surface area and circumference of the 
tumour [7]. Both the dimensions and their ratios are im­
portant characteristics of gliomas. It has been shown that 
an increased surface area/volume ratio of a lesion indi­
cates the spicularity of the lesion, and therefore its higher 
malignant potential compared to an oval lesion for which 
the ratio is lower [8]. 

First-order features

First-order features refer to analyses of a single pixel 
or voxel. They are based on a grey-level histogram and 

Figure 2. A) CE-T1WI MRI slice with annotated necrosis (NCR) (red). B) CE-T1WI MRI slice with annotated non-enhancing tumour (NET) (green). C) CE-T1WI 
MRI slice with annotated enhancing tumour (ET) (yellow). D) FLAIR MRI slice with annotated tumour core (TC) and peritumoral oedema (ED) (blue)

Figure 3. Tumour core (TC) extracted from CE-T1WI MRI slice, and grey-level histogram created on its basis
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describe in a statistical way the intensity within the region 
of interest (ROI) by, for example, minimum, maximum, 
mean, maximum, percentiles, and kurtosis [7] (Figure 3). 

Texture-based features

Texture-based features are the most complex, and they 
describe the heterogeneity of the ROI. The most popular 
group of texture features is the grey-level co-occurrence 
matrix (GLCM) (Haralick features). GLCM describes the 
spatial relationships of adjacent pairs of pixels (or voxels) 
with grey-level intensities. 

Other well-known second-order parameters include 
the grey-level run length matrix, grey-level size zone ma­
trix, neighbouring grey-tone difference matrix, and grey-
level dependence matrix [7]. It has been proven that the 
degree of tumour heterogeneity is a prognostic determi­
nant of survival [9]. 

The authors used commercially available FDA-approved 
Olea Sphere software from Olea Medical SAS for image 
analysis. A total of 92 radiomic features were collected 
from each ROI: 19 first-order metrics, 10 shape-based, and  
75 second-order metrics consisting of 24 GLCMs. 

Each group of features is derived from every sequence 
(Figure 4).

I. Contrast-enhanced, T1-weighted images. Intravenous 
administration of contrast media enables delineation of the 

tumour core [3]. Combined with data obtained from T1WI, 
radiomic features can precisely describe the type of lesion 
enhancement. 

II. T1-weighted imaging is included in the basic MRI 
brain imaging protocol [2]. T1-weighted images are 
characterized by a very good representation of brain mor­
phology. Glioblastoma (WHO IV) on T1-weighted im­
ages is characterized by heterogeneous hypo-/isointense 
signals [10]. 

III. T2-weighted imaging and FLAIR sequences are 
also a part of the standard brain imaging protocol [2].  
They allow us to delineate the zone of the surrounding oede­
ma [3]. It has been shown that Haralick features derived 
from the T2W-FLAIR sequence can predict the survival of 
patients with glioblastoma [11]. In addition, a T2WI-FLAIR 
mismatch sign is being investigated, which can indicate the 
presence or absence of specific mutations [12]. 

The authors’ study is based on an extended MRI proto­
col, and the radiomic feature database is extended with data 
extracted from apparent diffusion coefficient (ADC) maps. 

IV. Diffusion-weighted imaging (DWI) may quan­
tify the random Brownian motion of water molecules 
throughout GBM tissues. These maps highlight regions 
of restricted diffusion, which may be caused by necrosis 
or hypercellular tumours [13]. Various studies show that 
ADC values might be useful in the diagnosis and progno­
sis of gliomas [14].

Figure 4. A) CE-T1WI MRI slice with annotated tumour core (TC). B) T1WI MRI slice with annotated tumour core (TC). C) T2WI MRI slice with annotated 
tumour core (TC). D) ADC MRI slice with annotated tumour core (TC)
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Data analysis

The first step is the dimensionality reduction of the 
dataset to obtain an optimal set of parameters. The fea­
ture selection is necessary to find and remove irrelevant, 
unstable data from the analysis. Without this, overfitting, 
and consequently false results, can occur even with a very 
large sample size. A well-known feature selection method 
– ReliefF – is frequently used [15]. ReliefF is an algorithm 
that is based on nearest neighbours – a machine learning 
model (ML) [16]. 

Following feature selection, a collection of selected 
features can be utilized to develop machine learning mod­
els. ML refers to algorithms that are programmed to learn 
from observations and make statistical inferences based 
on what they have learned [17]. In radiomics, various 
techniques can be chosen. It is impossible to select one 
method that is most effective for a wide range of radiomic 
feature analysis problems. Two main groups of classifiers 
can be distinguished: supervised and unsupervised. In 
unsupervised techniques, the target labels are unknown. 
In supervised techniques, prior to the analysis, radiomic 
data should be supplemented with clinical data [18]. With 
this additional information, the supervised technique uses 
a predetermined collection of known labels to identify 
the features that best reflect the outcomes of interest. In 
a standard approach to data analysis without artificial in­
telligence (AI) techniques, the process can be presented 
as supplying data to an algorithm created by a program­
mer and then expecting results. In an approach based on 
ML, the computer has to create an algorithm by itself that 
best finds the patterns or correlations. Depending on the 
clinical data with which the database has been enhanced, 
the machine learning model can be used to predict tar­
get factors in the present, such as the absence or presence 
of a specific type of tumour, and future variables like re­
sponding to therapy or survival. There are numerous ML 
models in both the supervised and unsupervised groups 
[19]. Figure 5 shows examples of the machine learning 
models most widely used in radiomic analysis.

The authors will a supervised ML model and supple­
ment their database with clinical data – time to progres­
sion. It is still unknown which ML algorithm will learn 

the most from the collected data. They expect the greatest 
value from densely connected neural networks, random 
forests, and K-nearest neighbours will also be tested. As 
a result, they wish to obtain a model that can predict pro­
gression-free survival with certain accuracy and specificity. 

Conclusions
Radiomics is a young and fast-growing branch of 

modern radiology. The creation of radiomic models re­
quires carefully adherence to all the steps discussed.  
Efforts to standardize them are ongoing and will ultimate­
ly simplify the publication of meta-analyses.

Neurooncology is a specialty in which radiomics can 
play a particularly important role. In medical publica­
tions, there are an increasing number of reports on the 
correlation between the radiomic features of glioblasto­
mas and the course of the disease. Radiomic models can 
provide information on individual mutations, on which 
the latest WHO classification of gliomas from 2016, up­
dated in 2021, is based. Early identification of malignant 
glioblastoma subtypes characterized by different progno­
ses and responses to treatment would greatly facilitate the 
implementation of targeted therapy, which appears to be 
the future of glioblastoma treatment. 

The purpose of this review was to provide an introduc­
tion to the topic the authors are working on. They intend 
to present the results of their work soon.
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Figure 5. Two main groups of ML models
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