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Abstract
Purpose: Early detection and monitoring of kidney function during the post-transplantation period is one of the most 
important issues for improving the accuracy of an initial diagnosis. The aim of this study was to evaluate texture 
analysis (TA) in scintigraphic imaging to detect changes in kidney status after transplantation. 

Material and methods: Scintigraphic images were used for TA from a total of 94 kidney allografts (39 rejected and 55 
non-rejected). Images corresponding to the frames at the 2nd, 5th, and 20th minute of the study were used to deter-
mine the optimum time point for analysis of differences in texture features between the rejected and non-rejected 
allografts. 

Results: Linear discriminant analysis indicated the best performance at the fifth minute frame for classification of 
the rejected and non-rejected allografts with receiver operating characteristic curve (Az) of 0.982, corresponding to 
91.89% sensitivity, 96.49% specificity, and 94.68% accuracy. Also, TA can differentiate acute tubular necrosis from 
acute rejection with Az of 0.953 corresponding to 88% sensitivity, 92.31% specificity, and 90.62% accuracy at the 5th 
minute frame. The best correlation between texture feature and kidney function was achieved at the 20th minute 
frame (r = –0.396) for glomerular filtration rate. 

Conclusions: TA has good potential for the characterisation of kidney failure after transplantation and can improve 
clinical diagnosis.
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Introduction
A kidney transplant is the treatment of choice for patients 
with chronic kidney disease (CKD) that has progressed 
to its final stage, i.e. end-stage renal disease (ESRD). Kid-
neys at ESRD are unable to remove metabolic waste, fluid, 
toxins, and excess fluid from the blood [1]. Despite recent 
improvements in treatments with immunosuppressive 
drugs and therapies, acute rejection (AR) causes graft 
loss in 12% of cases [2]. The serum creatinine (sCr) con-
centration remains the most commonly used endogenous 
filtration marker for monitoring graft function in kidney 

transplantation. AR manifest as a 25% or greater increase 
in serum creatinine level, and a decrease in urine output 
and glomerular filtration rate; it also causes pain and ten-
derness in the graft region. AR is asymptomatic in most 
cases and is only reflected by a rising serum creatinine 
level [3,4]. Allograft biopsy is usually performed if there is 
no other explanation for an increased creatinine level [5].

Although ultrasound is the chosen imaging technique 
for monitoring and assessing complications in a kidney 
allograft transplant, radionuclide imaging is advantageous 
compared to other imaging modalities because it provides 
information on functions as well as perfusion and glomer-
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ular filtration rate (GFR). Other imaging modalities such as 
computed tomography (CT) and magnetic resonance im-
aging (MRI) provide no additional information on evalua-
tion of renal function [3,6]. It seems that changes in kidney 
tissue are reflected in the properties of a medical image [7].

Function of a transplanted kidney has an effect on the 
patterns of scintigraphic images. These images consist of 
a range of grey-level intensities, and different types of tis-
sue have different textures. However, computerised texture 
analysis (TA) has been developed to increase diagnostic 
confidence and relieve anxiety, and to avoid unnecessary 
procedures such as biopsies and laboratory tests. In con-
ventional medical imaging, computerised TA uses a math-
ematical approach to detect pathological changes that are 
imperceptible to the human eye [8-10].

In the last decade, quantitative studies have evaluated 
kidney function using ultrasound [7,11-18], CT [19-21], 
radionuclide imaging [14,17-24], and MRI [25-28]. Pre-
vious studies have yielded promising results. The purpose 
of this study was to provide additional information with 
improved accuracy for monitoring kidney function. As 
mentioned before, allograft rejection causes tissue chang-
es. These changes can affect the texture of a kidney image. 
The aim of this study was to evaluate TA as a non-invasive 
method to monitor kidney allograft transplants among 
follow-up patients. To the best of our knowledge, this was 
the first study to apply TA of radionuclide images to eval-
uate kidney allografts.

Material and methods

Patients and image acquisition

Data were collected from patients who had undergone 
kidney allograft transplantation at Hasheminejad Hos-
pital.

All patients underwent diuretic renography according 
to the standard guidelines [29]. Inclusion criteria were as 
follows: (1) Patients had been tested for serum creatinine 
(sCr) as standard care in cases with decreased allograft 
function or suspicion of rejection. (2) sCr level was de-
termined on the same day as the scintigraphy examina-
tion, measured by the standard laboratory method (Jaffe) 
using a kinetic colorimetric assay in the central laborato-
ry of Hasheminejad Hospital. GFR was based on serum 
creatinine (MDRD or CKD-EPI equations) determined as 
a parameter to assess kidney function [30]. (3) All patients 
received similar immunosuppressive therapy treatments 
based on steroids, mycophenolate, mofetil, and tacrolimus. 
(4) All patients had no previous history of transplantation.

Body mass index (BMI) was calculated as weight di-
vided by height squared (m2) (in kilograms per metre 
squared) during a physical examination. Biopsy was per-
formed a day after scintigraphy examination. 

In this study, scintigraphic images were acquired us-
ing a single-headed ADAC gamma camera equipped with 

a low-energy, high-resolution, parallel-hole collimator. 
The 10% window was centred on the 99mTc 140 keV pho-
topeak. Following intravenous injection of 7 mCi 99mTc-di-
ethylene-triaminepenta acetic acid (99mTc-DTPA) anterior 
dynamic images with matrix size of 128 × 128 were ob-
tained for 30 minutes.

Texture feature and regions of interest selection

Regions of Interest (ROIs) were drawn for each whole 
kidney. For each ROI, up to 300 texture features were 
extracted based on histogram, absolute gradient (spatial 
variation of grey-level values), run-length matrix (counts 
of pixel runs with the specified grey-scale value and length 
in a given direction), co-occurrence matrix (information 
about the distribution of pairs of pixels separated by given 
distance and direction), autoregressive model (description 
of correlation between neighbouring pixels), and wavelets 
(decomposition image frequency at different scales) [8,9].

The procedure was performed on images correspond-
ing to frames at the 2nd, 5th, and 20th minute of image ac-
quisition. Evaluations of texture features were made from 
static images at intervals of the 2nd, 5th, and 20th minute 
(Figure 1). Scintigraphic images were considered as input 
in the MaZda software (version 4.6; The Technical Univer-
sity of Lodz, Institute of Electronics) for TA.

Statistical analysis

Data were tested for normality by the Kolmogorov- 
Smirnov test. The two-tailed Independent Samples t-test/
Mann-Whitney U-test was applied for comparisons of 
age, BMI, sCr, and GFR levels between the two groups 
(rejected and non-rejected allograft transplants). Also, the 
Independent Samples t-test/Mann-Whitney U-test was 
used to assess texture feature differences between the two 
groups at the 2nd, 5th, and 20th minute time frames after 
data acquisition had begun.

The area under the receiver operating characteristic 
(ROC) curve (Az) was calculated for each significant texture 
feature in order to evaluate overall performance of classifi-
cation between the two groups [31]. The Pearson/Spearman 
correlation test was used to determine correlations between 
significant texture features and sCr level and GFR at each 
time frame (2nd, 5th, and 20th min). A p-value < 0.05 was 
considered significant. Az values were estimated beyond the 
95% confidence level. Statistical analysis was made using 
SPSS software version 19 (SPSS Inc., Chicago, USA).

Texture analysis and classification

Texture features that showed significant differences be-
tween two groups were used for the computerised multi- 
parameter TA (MPTA) method. Linear discriminant anal-
ysis (LDA) was used to transform raw texture features to 
lower-dimensional spaces and to increase discriminative 
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power. Features processed by LDA were considered use-
ful for pattern recognition and classification because they 
make data of the same class closer together and data of 
different classes further apart.

First nearest neighbour (1-NN) classifier was used for 
features determined by LDA. To compare performance of di-
agnostics, six well-known indexes were calculated: Az value, 
accuracy (ACC), sensitivity (SEN), specificity (SPC), positive 
predictive value (PPV), and negative predictive value (NPV).

The steps of the proposed computerised TA process are 
presented in Figure 2. 

Results

Demographic data of patients

This retrospective study considered 94 biopsies of proven 
renal allograft recipients (50 male, 44 female). Of these 
94 patients, transplanted kidneys had been rejected (AR) 
in 39 patients (25 male, 14 female). The non-rejected 
group consisted of 55 cases with 25 acute tubular necros-
es (ATN); 12 cases of obstruction and 18 normal cases.  
The mean duration of dialysis before transplantation was 
2.5 ± 0.6 years. Biopsy was performed with mean (± SD) of 
1.37 ± 0.97 years after transplantation. No significant dif-
ference was determined between rejected and non-reject-
ed grafts in terms of male and female (p = 0.057, Table 1). 
Also, evaluations for difference in mean age and BMI of 
recipients in the rejected and non-rejected groups were 
determined as not statistically significant (p = 0.058 and  
p = 0.092, respectively, Table 1).

sCr levels in patients with a rejected kidney trans-
plant were higher than in those with non-rejected kidney 
transplants, and the difference was statistically significant 
(p < 0.001). GFR in patients with a non-rejected kidney 
transplant was higher than that in patients with rejected 
kidney transplants, and the difference was determined as 
statistically significant (p < 0.001).

Figure 1. Sample of scintigraphic images of rejected (A) and non-rejected (B) kidney transplant recipients for 2nd, 5th, and 20th minute of image acquisition
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Figure 2. The computer-aided diagnosis processing steps. ROI indicates 
regions of interest, LDA – linear discriminant analysis, and ROC – receiver 
operating characteristic curve
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Texture features and pathological changes

The significant texture features between rejected and non- 
rejected kidney transplant images of the 2nd min frame 
were from the co-occurrence matrix: sum of squares S(i,j) 
and sum variance S(i,j); where S(i,j) showed the direction 
of the matrix construction and the inter-pixel distance 
i along rows and j along columns of the matrix, other tex-
ture features mostly belonged to wavelet: ‘low-high’ ener-
gy components in the sixth level wavelet decomposition 
(WavEnLH_s-6), WavEnLH_s-5 and ‘high-low’ energy 
components in the third level wavelet decomposition 
(WavEnHL_s-3); histogram: variance; and autoregressive 
model: Teta1 and Sigma (Table 2). 

The significant texture features between rejected and 
non-rejected kidney transplant images of frames at the 
5th min were from the co-occurrence matrix: correlate 
S(i,j), sum entropy S(i,j) and sum variance S(i,j). Other tex-
ture features mostly belonged to wavelet: WavEnLH_s-6; 
WavEnHH_s-6; histogram: skewness; and autoregressive 
model: sigma (Table 3).

The significant texture features between rejected and 
non-rejected kidney transplant images of the 20th min 
frame were from the autoregressive model: Teta2 and 
Teta3; histogram: percentile_1% and percentile_10%; run-
length matrix: short run emphasis in 45-degree, and verti-
cal direction, run length non-uniformity in 45-degree, and 
vertical direction and fraction of image in runs in 45-de-
gree direction; wavelet: WavEnHH_s-5, WavEnLH_s-2, 
WavEnLH_s-1, WavEnLL_s-4, WavEnHL_s-2; co-occur-
rence matrix: inverse difference moment S(i,j); absolute gra-
dient: percentage of pixels with nonzero gradient matrix 
and mean of absolute gradient matrix (Table 4).

Correlation between texture features and serum 
creatinine levels

Among all the significant texture features, some indi-
cated a significant positive or negative correlation with 
sCr (or GFR). The highest correlation coefficients at the 
2nd min frame for sCr and GFR are sum variance S(2,–2)  
(r = –0.346, p = 0.001) and sum variance S(2,–2) (r = 0.315, 

p = 0.002), respectively (Table 2). The highest correlation 
coefficients at the min 5th min frame or sCr and GFR are 
correlate S(0,2) (r = –0.398, p < 0.001) and correlate S(0,2) 
(r = 0.351, p = 0.001), respectively (Table 3), and the high-
est correlation coefficients at the 20th min frame for sCr 
and GFR are Teta3 (r = 0.392, p < 0.001) and the short run 
emphasis in the vertical direction (r = –0.396, p < 0.001), 
respectively (Table 4).

Area under the roc curve for classification of rejected  
and non-rejected transplantation

Roc analysis indicated that texture features of wavelet 
(WavEnLH_s-6) and histogram (variance) had the highest 
discriminatory power in terms of differentiation between 
rejected and non-rejected cases of kidney transplant, with 
Az values of 0.693 and 0.683, respectively, at the 2 min 
frame. Az values of other texture features are listed in  
Table 2. Table 3 shows that Az values of the co-occurrence 
matrix (correlate S(0,1) and correlate S(0,2)) and histo-
gram (skewness) texture features had higher discriminato-
ry power than others to classify rejected and non-rejected 
cases at the 5th min frame. The Az value of correlate S(0,1), 
correlate S(0,2), and skewness were 0.705, 0.698, and 0.694, 
respectively. The Az values of texture features of the auto-
regressive model (Teta2, Az = 0.674, and Teta3, Az = 0.661) 
and histogram (percentile_1%, Az = 0.660) were higher in 
terms of difference between rejected and non-rejected cas-
es at the 20th min frame. The Az values of each significant 
feature are listed in Table 4.

Texture analysis and classification
Diagnostic performance of the MPTA for classification 
and comparison between rejected and non-rejected cases 
are shown in Table 5. Figure 3A shows ROC curves of the 
proposed MPTA that demonstrated the best performance 
at the 5th min frame in terms of classification between re-
jected and non-rejected cases with Az = 0.982, which cor-
responds to 91.89% sensitivity, 96.49% specificity, 94.68% 
accuracy, 94.44% PPV, and 94.83% NPV. Performances of 
other frames are listed in Table 5. 

Table 1. Main demographic characteristics and laboratory data of rejected and non-rejected kidney transplant recipients

Factor Mean ± SE Independent-sample  
t test (p-value)Total Rejected Non-rejected

Age 42.77 ± 01.42 45.24 ± 01.95 39.28 ± 01.93 0.058

Creatinine 02.73 ± 0.13 03.30 ± 0.18 01.92 ± 0.11 < 0.001

GFR 37.10 ± 02.20 26.31 ± 02.00 52.31 ± 03.19 < 0.001

BMI 23.91 ± 0.30 24.34 ± 0.40 23.32 ± 0.43 0.092

Number (%) Pearson χ2 (p-value)

Gender Female Male Female Male Female Male

44 (46.80) 50 (53.20) 14 (35.90) 25 (64.10) 30 (54.55) 25 (45.45) 0.057
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Because 45% of non-rejected cases were ATN, MPTA 
was also applied to differentiate AR from ATN. In this re-
gard, diagnostic performance of the MPTA for classifica-
tion and comparison between 39 AR and 25 ATN cases 
are shown in Table 5. Figure 3B shows ROC curves of the 
proposed MPTA that demonstrated the best performance 
at the 5th min frame in terms of classification between AR 
and ATN cases with Az = 0.953, which corresponds to 88% 
sensitivity, 92.31% specificity, 90.62% accuracy, 88% PPV, 

and 92.31% NPV. Performances of other frames are listed 
in Table 5.

Discussion
The primary objective of this study was to evaluate the po-
tential of TA as a non-invasive method to monitor func-
tion in kidney allograft transplants using scintigraphic 
imaging. Up to 300 texture features were extracted from 

Table 2. Pearson correlations between serum creatinine (sCr) level, GFR, and texture feature in kidney transplant recipients, 2nd min frame after acquisition

Texture feature name Pearson coefficient (p-value) Independent-sample 
test (p-value)

Az value*

sCr level GFR

WavEnLH_s-6 –0.306 (0.003) 0.299 (0.003) 0.001 0.693 (0.585, 0.800)

Variance –0.344 (0.001) 0.313 (0.002) 0.003 0.683 (0.571, 0.794)

Sum of Squares S(1,0) –0.342 (0.001) 0.312 (0.002) 0.003 0.680 (0.569,0.792) 

Sum Variance S(1,0) –0.341 (0.001) 0.311 (0.002) 0.003 0.680 (0.568, 0.791)

Sum Variance S(2,0) –0.343 (0.001) 0.312 (0.002) 0.003 0.679 (0.568, 0.791)

Sum of Squares S(1,1) –0.338 (0.001) 0.308 (0.003) 0.003 0.679 (0.568, 0.791)

S(1,–1) sum of squares –0.344 (0.001) 0.315 (0.002) 0.003 0.679 (0.568, 0.791)

Sum Variance S(1,–1) –0.342 (0.001) 0.313 (0.002) 0.003 0.679 (0.568, 0.791)

Sum of Squares S(0,1) –0.338 (0.001) 0.308 (0.003) 0.003 0.679 (0.567, 0.791)

Sum Variance S(0,1) –0.339 (0.001) 0.308 (0.003) 0.003 0.679 (0.567, 0.790)

Sum Variance S(1,1) –0.337 (0.001) 0.306 (0.003) 0.003 0.678 (0.566, 0.790)

Sum Variance S(5,0) –0.338 (0.001) 0.307 (0.003) 0.004 0.677 (0.565, 0.789)

Sum of Squares S(2,0) –0.340 (0.001) 0.312 (0.002) 0.004 0.677 (0.565, 0.789)

Sum of Squares S(0,2) –0.338 (0.001) 0.309 (0.002) 0.004 0.677 (0.565, 0.789)

Sum Variance S(2,2) –0.334 (0.001) 0.302 (0.003) 0.004 0.677 (0.565, 0.789)

Sum Variance S(4,0) –0.338 (0.001) 0.307 (0.003) 0.004 0.676 (0.564, 0.789)

Sum Variance S(3,0) –0.339 (0.001) 0.308 (0.003) 0.004 0.676 (0.564, 0.788)

Sum Variance S(0,2) –0.339 (0.001) 0.307 (0.003) 0.004 0.676 (0.564, 0.788)

Sum Variance S(2,–2) –0.346 (0.001) 0.315 (0.002) 0.004 0.676 (0.564, 0.788)

Sum Variance S(4,4) –0.329 (0.001) 0.296 (0.004) 0.004 0.676 (0.563, 0.788)

Sum of Squares S(2,2) –0.336 (0.001) 0.307 (0.003) 0.004 0.675 (0.563, 0.787)

WavEnLH_s–5 –0.345 (0.001) 0.294 (0.004) 0.004 0.674 (0.564, 0.783)

Sum Variance S(3,3) –0.330 (0.001) 0.294 (0.004) 0.004 0.674 (0.562, 0.786)

Sum Variance S(5,5) –0.320 (0.002) 0.288 (0.005) 0.004 0.674 (0.561, 0.787)

Sum of Squares S(2,–2) –0.340 (0.001) 0.302 (0.003) 0.004 0.674 (0.561, 0.786)

sum Varnc S(3,–3) –0.344 (0.001) 0.313 (0.002) 0.004 0.673 (0.560, 0.785)

Sum of Squares S(0,3) –0.332 (0.001) 0.305 (0.003) 0.005 0.672 (0.560, 0.785)

Sum of Squares S(3,3) –0.333 (0.001) 0.304 (0.003) 0.005 0.672 (0.560, 0.784)

Sum of Squares S(3,0) –0.332 (0.001) 0.305 (0.003) 0.005 0.671 (0.559, 0.784)

Sum Variance S(0,3) –0.340 (0.001) 0.309 (0.002) 0.005 0.671 (0.559, 0.784)

Teta1 –0.141 (0.176) 0.122 (0.240) 0.025 0.667 (0.550, 0.785)

Sigma 0.336 (0.001) –0.280 (0.006) 0.006 0.663 (0.550, 0.776)

WavEnHL_s–3 –0.271 (0.008) 0.267 (0.009) 0.035 0.663 (0.518, 0.749)
* Numbers in parentheses are 95% confidence intervals.
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Table 3. Pearson correlations between serum creatinine (sCr) level, GFR, and texture feature in kidney transplant recipients, 5th min frame after acquisition

Texture feature name Pearson coefficient (p–value) Independent-sample test
(p-value)

Az value*

sCr level GFR

Correlate S(0,1) –0.394 (< 0.001) 0.349 (0.001) 0.001 0.705 (0.592, 0.819)

Correlate S(0,2) –0.398 (< 0.001) 0.351 (0.001) 0.001 0.698 (0.584, 0.812)

Skewness –0.231 (0.025) 0.206 (0.030) 0.001 0.694 (0.588, 0.800)

Correlate S(1,1) –0.317 (0.002) 0.279 (0.007) 0.010 0.693 (0.578, 0.809)

Correlate S(1,0) –0.313 (0.002) 0.279 (0.006) 0.002 0.693 (0.578, 0.808)

Correlate S(0,3) –0.397 (< 0.001) 0.350 (0.001) 0.002 0.691 (0.576, 0.806)

Correlate S(1,-1) –0.394 (< 0.001) 0.252 (0.001) 0.002 0.688 (0.574, 0.801)

Sigma 0.343 (0.001) 0.291 (0.004) 0.002 0.688 (0.573, 0.802)

Correlate S(2,-2) –0.381 (< 0.001) 0.342 (0.001) 0.016 0.683 (0.566, 0.800)

Correlate S(2,2) –0.305 (0.003) 0.267 (0.009) 0.016 0.683 (0.566, 0.800)

Correlate S(2,0) –0.309 (0.002) 0.274 (0.008) 0.022 0.681 (0.565, 0.797)

Correlate S(0,4) –0.384 (< 0.001) 0.338 (0.001) 0.030 0.678 (0.561, 0.795)

Correlate S(3,0) –0.301 (0.003) 0.269 (0.009) 0.026 0.673 (0.557, 0.790)

Correlate S(2,-2) –0.381 (< 0.001) 0.342 (0.001) 0.005 0.670 (0.556, 0.785)

Correlate S(3,3) –0.282 (0.006) 0.246 (0.017) 0.022 0.670 (0.551, 0.789)

Correlate S(0,5) –0.369 (< 0.001) 0.234 (0.001) 0.008 0.662 (0.544, 0.780)

Correlate S(4,0) -0.288 (0.005) 0.258 (0.012) 0.028 0.659 (0.542, 0.776)

Correlate S(5,0) –0.265 (0.010) 0.243 (0.018) 0.030 0.655 (0.539, 0.771)

WavEnLH_s-6 .... (0.108) .... (0.099) 0.011 0.654 (0.544, 0.763)

Correlate S(4,4) –0.243 (0.018) 0.212 (0.040) 0.032 0.649 (0.530, 0.768)

Correlate S(3,-3) –0.352 (< 0.001) 0.324 (0.001) 0.032 0.645 (0.530, 0.760)

Sum Variance S(3,3) .... (0.499) .... (0.431) 0.035 0.637 (0.521, 0.753)

Sum Entropy S(3,3) .... (0.441) .... (0.323) 0.047 0.635 (0.520, 0.751)

Sum Variance S(2,2) .... (0.557) .... (0.475) 0.035 0.635 (0.519, 0.751)

Sum Variance S(4,4) .... (0.499) .... (0.428) 0.038 0.634 (0.518, 0.751)

Sum Variance S(0,2) .... (0.557) .... (0.462) 0.038 0.634 (0.518, 0.750)

Sum Variance S(1,1) .... (0.629) .... (0.523) 0.037 0.634 (0.518, 0.749)

WavEnHH_s-6 .... (0.495) .... (0.536) 0.029 0.633 (0.521, 0.745)

Sum Variance S(0,3) .... (0.527) .... (0.436) 0.037 0.633 (0.517, 749)

Sum Entropy S(2,2) .... (0.511) .... (0.367) 0.044 0.632 (0.517, 0.748)

Sum Variance S(0,1) .... (0.625) .... (0.509) 0.038 0.632 (0.516, 0.748)

Sum Variance S(3,–3) .... (0.459) .... (0.378) 0.036 0.632 (0.516, 0.748)

Sum Entropy S(0,3) .... (0.521) .... (0.383) 0.046 0.632 (0.516, 0.747)

Sum Variance S(0,4) .... (0.488) .... (0.421) 0.038 0.632 (0.515, 0.748)

Sum Entropy S(1,1) .... (0.555) .... (0.390) 0.041 0.631 (0.516, 0.747)

Sum Variance S(3,0) .... (0.548) .... (0.441) 0.038 0.631 (0.515, 0.748)

Sum Variance S(0,5) .... (0.458) .... (0.397) 0.042 0.631 (0.515, 0.748)

Sum Variance S(5,5) .... (0.553) .... (0.460) 0.045 0.631 (0.515, 0.748)

Sum Variance S(2,-2) .... (0.516) .... (0.424) 0.037 0.631 (0.515, 0.747)

Sum Entropy S(0,4) .... (0.486) .... (0.365) 0.046 0.630 (0.514, 0.747)
* Numbers in parentheses are 95% confidence intervals.
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Table 4. Pearson correlations between serum creatinine (sCr) level, GFR, and texture feature in kidney transplant recipients, 20th min frame after acquisition

Texture feature name Pearson coefficient (p-value) Independent-sample test
(p-value)

Az value *

sCr level GFR

Teta2 –0.347 (0.001) 0.337 (0.001) 0.007 0.674 (0.562, 0.786)

Teta3 0.392 (< 0.001) –0.337 (0.001) 0.006 0.661 (0.548, 0.773)

Percentile_1% –0.202 (0.051) 0.228 (0.027) 0.005 0.660 (0.545, 0.776)

Short Run Emphasis in 45-Degree Direction 0.342 (0.001) –0.358 (< 0.001) 0.012 0.657 (0.543, 0.770)

Percentile_10% –0.264 (0.010) 0.292 (0.004) 0.005 0.653 (0.538, 0.769)

Inverse Difference Moment S(1,1) –0.363 (< 0.001) 0.367 (< 0.001) 0.007 0.653 (0.538, 0.769)

Inverse Difference Moment S(2,2) –0.349 (0.001) 0.346 (0.001) 0.011 0.650 (0.534, 0.766)

WavEnHH_s–5 0.044 (0.670) –0.299 (0.003) 0.014 0.649 (0.537, 0.761)

Run Length Non-Uniformity in 45-Degree 
Direction

0.167 (0.108) –0.108 (0.300) 0.007 0.648 (0.537, 0.758)

Run Length Non-Uniformity in Vertical 
Direction

0.237 (0.022) –0.187 (0.017) 0.012 0.648 (0.536, 0.761)

WavEnLH_s-2 0.364 (< 0.001) –0.378 (< 0.001) 0.017 0.648 (0.533, 0.762)

WavEnLH_s-1 0.366 (< 0.001) –0.376 (< 0.001) 0.023 0.647 (0.532, 0.762)

Short Run Emphasis in Vertical Direction 0.376 (< 0.001) –0.396 (< 0.001) 0.020 0.647 (0.532, 0.762)

Mean of Absolute Gradient Matrix 0.349 (0.001) –0.360 (< 0.001) 0.008 0.646 (0.532, 0.760)

Fraction of Image in Runs in 45-Degree 
Direction

0.366 (< 0.001) –0.354 (< 0.001) 0.014 0.646 (0.529, 0.762)

Inverse Difference Moment S(3,3) –0.327 (0.001) 0.325 (0.001) 0.016 0.645 (0.528, 0.762)

WavEnLL_s-4 –0.295 (0.004) 0.320 (0.002) 0.006 0.644 (0.532, 0.757)

WavEnHL_s-2 0.341 (0.001) –0.348 (0.001) 0.005 0.644 (0.531, 0.757)

Percentage of Pixels with Nonzero  
Gradient Matrix

0.365 (< 0.001) –0.372 (< 0.001) 0.008 0.644 (0.529, 0.760)

*Numbers in parentheses are 95% confidence intervals.

Table 5. Diagnostic performance of proposed multi-parameter texture analysis for classification of rejected and non-rejected in kidney transplant recipients

Correct 
classification

Asymptotic
significance, p** 

Az value*NPV
(%)

PPV
(%)

ACC
(%)

SPC
(%)

SEN
(%)

Method of 
texture analysis

Time 
intervals

Groups

83/94
(88.30%)

< 0.0010.932 
(0.885, 0.980)

90.748588.3089.1087.18LDA2 minR vs. NR

89/94
(94.68%)

< 0.0010.982 
(0.963, 1.000)

94.6494.7494.6896.3692.30LDA5 min

76/94
(80.85%)

< 0.0010.847 
(0.772, 0.923)

83.6476.9280.8583.6476.92LDA20 min

53/64
(82.81%)

< 0.0010.898 
(0.823, 0.974)

85.0079.1782.8187.1876.00LDA2 minATN vs. AR

58/64
(90.62%)

< 0.0010.953 
(0.907, 0.999)

92.3188.0090.6292.3188.00LDA5 min

48/64
(75.00%)

< 0.0010.804 
(0.693, 0.915)

82.8565.5275.0074.3676.00LDA20 min

SEN – sensitivity, SPC – specificity, ACC – accuracy, PPV – positive predictive value, NPV – negative predictive value, – area under ROC curve, R – rejected, NR – non-rejected, ATN – acute 
tubular necrosis, AR – acute rejection 
*Numbers in parentheses are 95% confidence intervals 
**Null hypothesis: true area = 0.5. 
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many classes of texture, and at least 19 of these texture 
features showed significant differences between rejected 
and non-rejected kidney transplants at each of the time 
frames. Az values of these texture features were deter-
mined in the range of 0.630 to 0.705.

In general, according to the Az-value, the co-occur-
rence matrix features had higher potential compared to 
other feature groups in terms of differentiation between 
rejected and non-rejected kidney transplants at the 2nd 
and 5th minute frames; the best classification of accuracy 
was achieved at the 5th min frame. TA also showed good 
results in monitoring and determining GFR at each of the 
times. In this regard, the best result was achieved at the 
20th min frame, while at other frame times GFR had lower 
correlation coefficients.

Az values ordered by LDA using all texture features 
had a higher level of performance than did each of the 
texture features alone, according to classification of reject-
ed and non-rejected groups. In this regard, Az-value of 
LDA at 2nd, 5th, and 20th frame times were 0.932, 0.982, and 
0.847, respectively, while the highest level of performance 
was achieved by WavEnLH_s-6, correlate S(0,1), and 
Teta2 with Az-values of 0.693, 0.705, and 0.674, respec-
tively. Hence MPTA increased the information provided 
by scintigraphic imaging.

Since evaluations of mean age, BMI, and gender be-
tween the rejected and non-rejected kidney transplant 
recipients were determined as not significantly different, 
these parameters were not determined as confounding 
factors in this study.

At each frame time, among all texture features de-
termined as significantly different between rejected and 

Figure 3. The diagrams of the receiver operating characteristic curve for texture analysis method with linear discriminant analysis (LDA) for classification of 
(A) rejected and non-rejected and (B) acute tubular necrosis and acute rejection in kidney transplant recipient. Az indicates area under the receiver operating 
characteristic curve
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non-rejected groups, some texture features had no signif-
icant correlation with sCr level (or GFR). Based on a study 
by Kee et al., there is a subgroup of subclinical rejection 
defined as when histologic changes of AR were observed 
in the absence of an increased serum creatinine concen-
tration [32]. From this reference it seems that patholog-
ical evidence of rejection in renal allograft had no corre-
lation with the serum creatinine test. In addition, GFR 
was considered as a better criterion for monitoring kidney 
function and was advantageous over the sCr level because 
some GFR showed significant correlation with texture fea-
tures while sCr levels did not show significant correlation. 

AR and ATN are two common causes of impaired 
kidney function in the early post-transplantation period. 
Since scan patterns of severe ATN and AR are similar, 
perfusion indices cannot be considered as a good mark-
er to distinguish them. Hence, biopsy remains the main 
method used for diagnosis [3,33-35]. Our results indicate 
that TA of scintigraphic imaging can provide additional 
information and has the potential to help physicians dif-
ferentiate AR from ATN with an Az-value of 0.953.

Over the past few decades, quantitative studies have 
been employed to evaluate kidney function. Although ul-
trasound is often the primary choice for an initial assess-
ment, follow-up, and monitoring of kidney transplants, 
scintigraphy has an advantage and can provide better 
information on kidney function [13-15,17,18]. In addi-
tion, according to research cited in the literature, there is 
no agreement on the resistance index (RI). Some studies 
have demonstrated that RI was a reliable marker to assess 
kidney function [12-14], but others have shown the op-
posite [11,16-18]. Hence, more research needs to be done 
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to test RI before it can be recommended for use in clinical 
centres.

Many studies have indicated that MRI can detect 
changes in kidney function by using dynamic contrast en-
hanced MRI-derived values [25], diffusion-weighted im-
aging (DWI), and diffusion tensor imaging (DTI) [26-28]. 
Reports have shown Az-values ranging from 0.865 to 0.885, 
while our results showed a superior Az-value at 0.982. Also, 
gamma cameras are more accessible in daily clinical prac-
tice, while DTI and DWI are more expensive and are less 
readily available. CT findings indicate that renal volum-
etry and perfusion measurements of kidney post-trans-
plant have some correlation or even superior correlation to 
nuclear renography [19-22]. However, renal scintigraphy 
remains the referencing technique in clinical practice [6], 
although CT volumetry is sensitive to the degree of con-
trast agent injection. In addition, use of a contrast agent is 
limited in order to minimise the risk of toxic complications 
from iodinated and gadolinium-based intravenous contrast 
agents. 

Relatively few studies have employed positron emis-
sion tomography (PET) imaging to evaluate kidney func-
tion, and the findings have been quite controversial. In 
this regard, mean standardised uptake values (SUVmean) 
cannot be correlated with GFR, and a non-significant 
difference was determined between the kidney function 
groups tested in this study [23]. In contrast, SUVmean had 
the potential to detect AR with sensitivity of 100%, spec-
ificity of 50%, and Az-value of 0.930 [24]. The results of 
this study indicate that scintigraphic imaging, which is 
conventionally used in clinical centres, is more reliable 
than unconventional and expensive PET imaging. 

In our previous study TA was employed to diagnose 
chronic kidney allograft rejection in ultrasound imaging, 
and the study indicated that TA had good potential for 
diagnosis of acute kidney allograft rejection [7]. Hence 
these results indicated that TA was a noninvasive, fast, and 
powerful technique for monitoring kidney function after 
transplantation.

The ability to detect and monitor kidney function dur-
ing the post-transplantation period is an important fac-
tor for improving initial diagnoses. Further study using 
a larger dataset is needed to confirm these results. Scin-
tigraphic classification based on TA was compared with 

pathology test results. Kidney function was also evaluated 
using sCr level. Because sCr level can be influenced by 
muscle mass, sex, age, and medication [36,37], cystatin-C 
indices may be a better reflection of the true GFR [38,39], 
and definitive results require comparison with pathologic 
analysis (biopsy) and cystatin-C.

Becuase patient referrals were made on the basis of 
clinical indications, other kidney characteristics had no 
additional information and were not considered for TA. 
This method is not suggested as an alternative to a biopsy 
or serum examination, but it can be applied to help physi-
cians identify subtle changes and select patients for biopsy 
that is classified as having a high risk of graft rejection.

Conclusions
In conclusion, we propose a new approach based on 
MPTA to evaluate the usefulness of renal graft scintig-
raphy for predicting renal function and to determine the 
best time point for this purpose. The best results were 
achieved at the 5th and 20th min frames to classify reject-
ed and non-rejected kidney transplants and monitor sCr 
level, respectively. Also, MTA of scintigraphic imaging can 
provide additional information and has the potential to 
help physicians differentiate AR from ATN.
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