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Abstract
Purpose: Papillary thyroid carcinoma (PTC) is the most common thyroid cancer, and cervical lymph nodes (LNs) 
are the most common extrathyroid metastatic involvement. Early detection and reliable diagnosis of LNs can lead to 
improved cure rates and management costs. This study explored the potential of texture analysis for texture-based 
classification of tumour-free and metastatic cervical LNs of PTC in ultrasound imaging.

Material and methods: A total of 274 LNs (137 tumour-free and 137 metastatic) were explored using the texture analy-
sis (TA) method. Up to 300 features were extracted for texture analysis in three normalisations (default, 3sigma, and 
1-99%). Linear discriminant analysis was employed to transform raw data to lower-dimensional spaces and increase 
discriminative power. The features were classified by the first nearest neighbour classifier.

Results: Normalisation reflected improvement on the performance of the classifier; hence, the features under 3sigma 
normalisation schemes through FFPA (fusion Fisher plus the probability of classification error [POE] + average cor-
relation coefficients [ACC]) features indicated high performance in classifying tumour-free and metastatic LNs with 
a sensitivity of 99.27%, specificity of 98.54%, accuracy of 98.90%, positive predictive value of 98.55%, and negative 
predictive value of 99.26%. The area under the receiver operating characteristic curve was 0.996.

Conclusions: TA was determined to be a reliable method with the potential for characterisation. This method can be 
applied by physicians to differentiate between tumour-free and metastatic LNs in patients with PTC in conventional 
ultrasound imaging.
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Introduction
Thyroid cancer is the most common endocrine malignan-
cy, with approximately 64,300 new cases reported in the 
United States in 2016. The Surveillance, Epidemiology, 
and End Results (SEER) database reported that the inci-

dence of thyroid cancer from 1975 to 2013 increased from 
4.85 to 15.07 per 100,000 [1]. This increase was prima-
rily a result of an increase in papillary thyroid carcinoma 
(PTC), the most common malignancy in thyroid cancer, 
representing approximately 90% of all thyroid malig-
nancies [2,3]. PTC is the most common histologic type  
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of differentiated thyroid cancer and is characterised by 
metastasis to the cervical lymph nodes (LNs). LN metas-
tasis occurs in approximately 30-90% of PTCs [4]. 

According to the American Thyroid Association 
(ATA), thyroid sonography of cervical LNs should be 
performed in patients with known or suspected thyroid 
nodules before patients undergo a thyroidectomy [5].  
The ability to perform real-time scanning, its convenience, 
and the fact that it is radiation-free and inexpensive are 
advantages that make ultrasound examination a popu-
lar technique. The structure of LN metastasis is changed 
and differs from that of normal LN. Differences include 
cystic change, loss of normal architecture, calcification, 
and hyper-echogenicity [6]. These changes can affect the 
texture of an ultrasound image. An ultrasound image in-
cludes diverse grey-level intensities, and different tissues 
have different textures. Although there is no precise or 
mathematical definition of texture, it is simply conceived 
by the human eye. Image texture can be described by var-
ious patterns: coarse, fine, smooth, or spatial variations 
in pixel intensity of objects within an image. Structural 
abnormalities in an ultrasound image can be extracted 
by visual inspection, but complex patterns are difficult to 
interpret [7,8].

Biopsy is the best way to confirm whether an LN is in-
volved or not; however, it is invasive, carries the risk of in-
fection, and is expensive and time-consuming. The overall 
accuracy of LN fine-needle aspiration (FNA) was greater 
than 94% [9]. To avoid unnecessary biopsy, assuage anxiety, 
and increase diagnostic confidence, computerised texture 
analysis has been developed. Computerised texture anal-
ysis is a mathematical technique that detects pathological 
changes that cannot be perceived by the human eye, using 
conventional ultrasound imaging.

Recently, some computer-aided methods for charac-
terising LN in ultrasound imaging have been proposed. 
Many quantitative features such as morphology [10-12], 
texture [13-15], contrast-enhanced based [16,17], and 
elastography [12,17-20] have been shown to be useful 
in differentiating between benign and malignant LNs.  
The present study provides additional information to 
support these claims. The current study evaluated texture 
ability, and this presents a non-invasive method to detect 
changes in ultrasound images of LN metastasis in patients 
with PTC. The variations of texture features between tu-
mour-free (benign) and metastatic (malignant) LNs were 
used for classification.

Material and methods

Patients and image acquisition 

Ultrasound images of 274 patients, comprising 137 
tumour-free and 137 metastatic cervical LNs with proven 
FNA, were used in this retrospective study. Patient con-
sent was not needed because the study was retrospective 

and used archived data. All patients had a previous history 
of total thyroidectomy due to PTC. The ultrasonographic 
inclusion criteria for lymph node biopsy were as follows: 
irregular cystic changes, microcalcified lymph node, focal 
or diffuse hyperechogenicity, a length greater than 5 mm 
in the short axis diameter, round shape (long-to-short 
axial diameter ratio < 1.5), and loss of fatty echogenic hi-
lum. The exclusion criteria were nondiagnostic biopsy and 
refusal to repeat FNAB, atypical/inconclusive FNAB and 
those who had prior head and neck irradiation or onco-
logical surgery. 

Neck ultrasonography was performed on these pa-
tients as routine evaluation. The largest cervical LN was 
selected because of the greater possibility of it exhibiting 
malignancy, and FNA cytology was performed to con-
firm or exclude involvement. Patients with no diagnostic 
or atypical/inconclusive FNA results were not included in 
the study.

All FNA were performed after ultrasound images of 
the target LN had been obtained for FNA under guidance 
of ultrasonography. Ultrasonography was performed us-
ing the Accuvix V20 sonography system (Medison, Seoul, 
Korea) equipped with an L5-13IS (5-13 MHz) linear ar-
ray transducer. Ultrasonography of the cervical triangle 
was performed, and all detected LNs were evaluated in 
longitudinal and transverse sections to measure the larg-
est small diameter and to select the biggest and target LN 
for FNA. Only one image per patient with the maximum 
longitudinal section of each node was used for texture 
analysis.

Texture analysis

MaZda software version 4.6 (Technical University of 
Lodz, Institute of Electronics) was used for texture analy-
sis. One 2D region of interest (ROI) was selected for each 
node; hence, 274 non-overlap ROIs (137 tumour-free 
and 137 metastatic) were selected for discrimination and 
classification. The sizes of the ROIs depended on nodes, 
where the mean size of the ROI was 15 × 15 mm. Either 
an endocrinologist or a general surgeon referred the cases 
based on clinical indication and routine patient follow-up. 
The images were compared with FNA cytology and the 
reference for statistical analysis.

Texture features

Up to 300 texture features were recorded based on his-
togram, absolute gradient (spatial variation of grey-level 
values), run-length matrix (counts of pixel runs with the 
specified grey-scale value and length in a given direction), 
co-occurrence matrix (information about the distribution 
of pixel pairs separated by a given distance and direction), 
auto-regressive model (description of correlation between 
neighbouring pixels), and wavelets (decomposition image 
frequencies in different scales). 
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Normalisation schemes

In this study, texture features were calculated for each 
ROI in three normalisations. The first, N1, was the de-
fault, and no normalisation was applied. Thus, the images 
had the same appearance at an intensity range of 1 to 2k, 
where k is the number of bits per pixel. The second, N2, 
was 3sigma, in which the ROI intensities were limited in 
the range [µ – 3σ and µ + 3σ], where µ and σ, respectively, 
are the mean value and standard deviation of the intensi-
ty. The third normalisation was N3, 1-99%, in which the 
image intensity ranges were normalised between the dark-
ness (accumulated histogram is equal to 1% of total) and 
brightness levels (accumulated histogram = 99% of total) 
inside the ROI. The intensity levels outside the normalisa-
tion range were not considered for analysis.

Automated feature selection

None of the 300 texture features were suitable or effec-
tive for differentiating between tumour-free and metastat-
ic LNs. By using two feature-reduction algorithms, Fisher, 
and the lowest probability of classification error and aver-
age correlation coefficients (POE+ACC), the parameters 
were reduced to the best ten texture features to show the 
best discrimination between tumour-free and metastatic 
LNs [21,22]. Also, the fusion Fisher plus the POE+ACC 
(FFPA) were performed to examine the discriminatory 
power of the two algorithms together.

On Fisher algorithm up to ten features were selected 
with the highest Fisher coefficient, defined as the ratio of 
between-class variance (D) (computed between the class 
means µk, k = 1, 2, K) to within-class variance (V) (com-
puted between the samples of class k and the correspond-
ing class mean µk):

F = = (1)D 1 – Σk = 1 Pk

1

V

K 2
K

K

KΣk = 1 Σj = 1 PkPJ (mk – mj)
2

Σk = 1 PkVk

where µk and Vk are mean and variance of class k, F is 
Fisher coefficient, and Pk is probability of class k. Maximi-
sation of the Fisher coefficient is desirable.

A POE+ACC algorithm uses the measures of both 
probability of classification error (POE) and average cor-
relation coefficients (ACC) between chosen features to in-
troduce 10 features with the lowest POE+ACC. The first 
feature, fi, is selected to minimise POE for all classes:

f1 = f1: mini [POE (fi)]  (2)

where POEfi (is the classification error probability for 
feature fi. This probability is defined as a ratio of a number 
of corrections in a sample classification to the whole num-
ber of samples in the analysed data set using only feature 
fi for classification.

number of samples not properly classified; 
marked in Figure 1

total number of samples 
in analysed data set

POE(fi) = (3)

Figure 1 shows the sample distribution of feature fi for 
two classes. The samples marked can be assigned to either 
class 1 or 2. In this case, these samples cannot be properly 
classified. The next feature (second feature) is then select-
ed by minimising the sum of all features except fi:

f2 = f1: mini [POE(fi) + |CC (f1. fi)|]  (4)

The |CC(f1. fi)| is the absolute value of the correlation 
coefficient between the previously calculated feature fi and 
the new feature fi. The nth feature is selected by minimis-
ing the following sum for all remaining features excluding 
already chosen features:

f2 = f1: mini [POE (fi) + |CC (fk.fi)|] =Σk = 1
n – 11

n – 1

= mini [POE(fi) + ACC(fi)]   (5)

where the average sum is extended for all correlation 
coefficients between previously selected features and fea-
ture fi. This sum is defined as an average correlation co-
efficient (ACC). 

In brief, the POE+ACC algorithm introduces features 
with high discriminatory potential and the least corre-
lation with features that are already selected. The Fisher 
algorithm selected features with maximised differences 
between two groups. Also, the FFPA algorithm introduce 
features with the lowest POE+ACC and highest difference 
between two groups. 

Statistical analysis and classification

Linear discriminant analysis (LDA) was used to trans-
form raw texture features to lower-dimensional spaces 
and to increase discriminative power; LDA seeks the most 
efficient direction for maximal separation of features. 
LDA demonstrated that variability among feature vectors 
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Figure 1. A sample distribution of feature for two classes. The samples 
marked cannot be properly classified
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of the same class (within class scatter) was minimised and 
variability among the feature vectors of different classes 
(between class scatter) was maximised. Features processed 
by LDA were considered useful for pattern recognition 
and classification because they put data of the same class 
closer together and data of different classes further apart.

The first nearest neighbour (1-NN) classifier was used 
for the features resulting from LDA. To compare diagnos-
tic performances, five well-known indexes were calculat-
ed: accuracy (ACC), sensitivity (SEN), specificity (SPC), 
positive predictive value (PPV), and negative predictive 
value (NPV). Their definitions are given as:

Accuracy (ACC) =
NTN + NTP

NTN + NFN + NTP + NFP

(6)

Sensitivity (SEN) =
NTP

NTP + NFN

(7)

Sensitivity (SPC) =
NTN

NTN + NFP

(8)

Positive predictive value (PPV) =
NTP

NTP + NFP

(9)

Positive predictive value (NPV) =
NTN

NTN + NFN

(10)

where NTP and NTN are the numbers of correctly di-
agnosed metastatic and tumour-free cases, respectively.  
NFP and NFN are the numbers of incorrectly diagnosed 
metastatic and tumour-free cases, respectively.

The area under the ROC curve (Az) was also calculated 
to evaluate the overall performance of the proposed meth-
od [23]. ROC analysis was performed using SPSS software 
version 19 (SPSS Inc., Chicago, USA), and Az values were 
estimated to be beyond the 95% confidence level. Figure 2 
shows the steps of the texture analysis process.

Results

Fisher and POE+ACC features

Figure 3A and Table 1 show the 10 best features 
with the highest Fisher coefficient values. Wavelet and 
run-length matrix features were more predominant and 
effective features for discriminating tumour-free from 
metastatic LNs in all three normalisations. The Fisher 
features are mostly from the energy of wavelet coeffi-
cient in “low-high” energy components in second level 
wavelet decomposition (WavEnLH_s-2), WavEnLH_s-3, 
WavEnLH_s-4, and WavEnLH_s-5, and “low-low” energy 
components in first-level wavelet decomposition (Wav-
EnLL_s-1), WavEnLL_s-2, WavEnLL_s-3, WavEnLL_s-4, 
and WavEnLL_s-5 from wavelet; run-length non-uni-
formity in horizontal and 45-degree directions (Horzl_
RLNU and 45dgr-RLNU), grey-level non-uniformity of 
image in horizontal, vertical, 45-degree, and 135-degree 
directions (Horz_GLNU, Vert_GLNU, 45dgr_GLNU, and 
135dgr_GLNU) from the Run-length matrix; sum average 
S(2, 2) (SA_S[2, 2]) and sum entropy S(0, 5) (SE_S[0, 5]) 
from the co-occurrence matrix where S(i,j) shows the direc-
tion of matrix construction and interpixel distance i along 
rows and j along columns of the matrix, and skewness of 
absolute gradient (Gr_Skewness) from the gradient.

Figure 3B and Table 2 show the 10 best features with 
the lowest POE+ACC values. Despite Fisher, only the 
wavelet features in POE+ACC were predominant and 
effective. Many common parameters could be seen be-
tween Fisher and POE+ACC reduction feature methods.  
The other POE+ACC features were mostly from the ener-
gy of the wavelet coefficient in “high-high” energy com-
ponents in fourth- and fifth-level wavelet decomposition 
(WavEnHH_s-4 and WavEnHH_s-5) from wavelet, long 
run emphasis in a horizontal direction (Horz_LRE), and 
fraction in a vertical direction (Vert_Fraction) from the 
run-length matrix; Teta4 and Teta3 from the autoregressive 
model; percentile 90% (Perc_90%), variance, and skewness 
from histogram; kurtosis of absolute gradient (Gr_Kurto-
sis) from Gradient and sum average S(0, 5) (SA_S[0, 5]), 
correlation S(0, 5) (Correlat_S[0, 5]), and sum of squares 
S(4, –4) (SOS_S[4, –4]) from the co-occurrence matrix.

Texture classification

The diagnostic performance of the texture analysis 
methods and normalisation schemes for Fisher features 
are listed in Table 3. Considering the normalisation role, 
Fisher features represented a higher performance with 
93.43% sensitivity, 91.97% specificity, 92.70% accuracy, 
92.75% PPV, and 93.33% NPV in 3sigma, while classifica-
tion tasks carried out in 1-99% and default normalisation 
had subsequent ranks, respectively.

POE+ACC features have a higher discrimination 
power to distinguish between tumor-free and metastatic 

Figure 2. Overview of general texture analysis process in the ultrasound 
lymph node images

Ultrasound lymph node image

ROI selection/Features extracting

Normalization

Tumor-free Metastatic

Texture analysis/LDA

Classification/ROC analysis

Default 3 Sigma 1-99%
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Figure 3. Evolution of two reduction methods for texture analysis. A) Fisher coefficient with 10 highest values, (B) probability of classification error and 
average correlation coefficient (POE+ACC) with 10 lowest values
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Table 1. Summary of 10 best Fisher features with highest values

Feature
rank

Normalisation

Default 3sigma 1-99%

Feature Fisher coefficient Feature Fisher coefficient Feature Fisher coefficient

1 WavEnLH_s-4 5.1055 WavEnLL_s-3 7.0694 WavEnLH_s-4 4.2902

2 WavEnLH_s-3 3.3025 WavEnLL_s-2 5.6225 WavEnLH_s-3 3.1058

3 WavEnLH_s-5 2.3952 WavEnLL_s-4 5.2312 WavEnLH_s-5 2.9345

4 WavEnLH_s-2 1.1781 WavEnLH_s-4 5.1331 Gr_Skewness 2.1927

5 WavEnLL_s-5 1.0984 WavEnLH_s-3 3.0562 Horzl_RLNU 2.1008

6 WavEnLL_s-4 1.0715 WavEnLL_s-1 2.6987 Horzl_GLNU 2.0388

7 Horzl_GLNU 1.0465 WavEnLL_s-5 2.3642 45dgr_RLNU 1.1473

8 45dgr_GLNU 1.0410 WavEnLH_s-5 2.0884 45dgr_GLNU 1.1190

9 135dr_GLNU 1.0376 SE_S(0,5) 1.5735 135dr_GLNU 1.1096

10 Vertl_GLNU 1.0371 SA_S(2,2) 1.4091 Vertl_GLNU 1.1036

Table 2. Summary of 10 best probability of classification error and average correlation coefficient (POE+ACC) features with lowest values

Feature
rank

Normalisation

Default 3sigma 1-99%

Feature POE+ACC 
coefficient

Feature POE+ACC 
coefficient

Feature POE+ACC 
coefficient

1 WavEnLH_s-4 0.4380 WavEnLH_s-4 0.4124 WavEnLH_s-4 0.3759

2 Horz_LRE 0.4387 SA_S(0,5) 0.4377 Vertl_Fraction 0.4820

3 WavEnLH_s-5 0.4737 WavEnLH_s-3 0.4868 Horzl_GLNU 0.4918

4 45dgr_GLNU 0.4745 WavEnHH_s-4 0.4913 WavEnLH_s-3 0.4967

5 WavEnLL_s-4 0.4831 WavEnLL_s-3 0.5013 WavEnLH_s-5 0.5099

6 WavEnLH_s-3 0.4845 Teta4 0.5158 SOS_S(4,-4) 0.5169

7 WavEnLH_s-2 0.5142 Horzl_GLNU 0.5210 WavEnHH_s-5 0.5266

8 WavEnHH_s-4 0.5166 Variance 0.5220 Perc.90% 0.5280

9 Correlat_S(0, 5) 0.5176 WavEnLH_s-5 0.5372 Teta3 0.5414

10 Skewness 0.5325 Gr_Kurtosis 0.5373 WavEnLL_s-5 0.5514
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LNs, in which sensitivity, specificity, accuracy, PPV, and 
NPV were 95.62%, 93.43%, 94.52%, 93.57%, and 95.52%, 
respectively, in 1-99% normalization, while classification 
tasks carried out in 3sigma and default normalisations 
were in the subsequent ranks, respectively (Table 4).

The FPPA features achieved discriminating power 
with a sensitivity of 99.27%, specificity of 98.54%, accu-
racy of 98.90%, PPV of 98.55%, and NPV of 99.26% in 
3sigma normalisation; 1-99% and default normalisation 
were in subsequent ranks, respectively (Table 5).

Figure 4 represents the ROC curves of texture analysis 
on the same graph for each feature reduction algorithm to 
compare the discriminating power of classification based 
on normalisation schemes. 3sigma normalisation has an 
advantage over the default and 1-99% normalisation in 
Fisher and FFPA features because of a greater Az value. As 
shown, the best performance was obtained in Fisher and 
FFPA features with Az values of 0.943 and 0.996, respective-
ly. In POE+ACC features, the best accuracy was achieved at 
1-99% normalisation with an Az value of 0.963.

The data distributions of the two texture classes with 
the best results in FFPA features and each normalisation 
are illustrated in Figure 5. As can be seen, the greatest 
power of discrimination to distinguish between tu-
mour-free and metastatic LNs was achieved in FFPA fea-
tures and 3sigma normalisation schemes.

Discussion
Discriminating between tumour-free and metastatic 

LNs is one of the most critical factors for improving the 
accuracy of radiologists’ initial diagnoses. The prima-
ry objective of this study was to evaluate texture ability, 
a non-invasive method for identifying changes between 
tumour-free and metastatic LNs using ultrasound imag-
ing. The results of the current study proved that texture 
analysis can differentiate between tumour-free and meta-
static LNs with high accuracy.

Two options for texture analysis were used and pro-
vided a total of nine states for each ROI case study: three 
feature-reduction methods (Fisher, POE+ACC, and 
FFPA) and three normalisation schemes (default, 3sigma, 
and 1-99% normalisation). The results demonstrated that 
FFPA features had more discriminative power than Fish-
er and POE+ACC features in the data of this research, 
where the best results were driven in FFPA features and 
3sigma normalisation, with an value of 0.996, which cor-
responded to a sensitivity of 99.27%, specificity of 98.54%, 
accuracy of 98.90%, PPV of 98.55%, and NPV of 99.26%.

In all normalisation schemes in order to Az values, FFPA 
features had a higher performance than the other two al-
gorithms, i.e. Fisher and POE+ACC. The Az values in each 
normalisation were as follows: default (Fisher vs. POE+ACC 

Table 3. Summary of performance for Fisher feature reduction method in three normalisation schemes

Correct classificationAz value*NPV (%)PPV (%)ACC (%)SPC (%)SEN (%)Normalisation scheme

243/274 (88.68%)0.908 (0.872, 0.944)89.5587.8888.6987.5989.78Default

254/274 (92.70%)0.943 (0.917, 0.970)93.3392.7592.7091.9793.433sigma

248/274 (90.51%)0.925 (0.893, 0.956)89.9391.1190.5191.2489.781-99%
SEN – sensitivity, SPC – specificity, ACC – accuracy, PPV – positive predictive value, NPV – negative predictive value, Az – area under ROC curve
*Numbers in parentheses are 95% confidence intervals

Table 4. Summary of performance for probability of classification error and average correlation coefficient (POE+ACC) feature reduction method in three 
normalisation schemes

Correct classificationAz value*NPV (%)PPV (%)ACC (%)SPC (%)SEN (%)Normalisation scheme

248/274 (90.51%)0.927 (0897, 0.958)90.5190.5190.5190.5190.51Default

251/274 (91.60%)0.934 (0.906, 0.963)91.9191.3091.6091.2491.973sigma

259/274 (94.52%)0.963 (0.943, 0.982)95.5293.5794.5293.4395.621-99%
SEN – sensitivity, SPC – specificity, ACC – accuracy, PPV – positive predictive value, NPV – negative predictive value, Az – area under ROC curve
*Numbers in parentheses are 95% confidence intervals

Table 5. Summary of performance for fusion Fisher and probability of classification error and average correlation coefficient (POE+ACC) feature reduction 
method in three normalisation schemes

Correct classificationAz value*NPV (%)PPV (%)ACC (%)SPC (%)SEN (%)Normalization scheme

254/274 (92.70%)0.945 (0.917, 0.972)92.7092.7092.7092.7092.70Default

271/274 (98.90%)0.996 (0.990, 1.000)99.2698.5598.9098.5499.273sigma

265/274 (96.71%)0.979 (0.965, 0.994)96.3897.0696.7197.0896.351-99%
SEN – sensitivity, SPC – specificity, ACC – accuracy, PPV – positive predictive value, NPV – negative predictive value, Az – area under ROC curve
*Numbers in parentheses are 95% confidence intervals
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vs. FFPA: 0.908 vs. 0.927 vs. 0.945), 3sigma (0.943 vs. 0.934 
vs. 0.996), and 1-99% normalisation (0.925 vs. 0.963 vs. 
0.979) (Figure 4). The Fisher method selected 10 features 
based on the maximised variance (difference) between 
textures, and POE+ACC minimised the number of sam-
ple classification errors. Because the criteria for feature 
selection by Fisher and POE+ACC are different, it can be 
concluded that these two methods are complementary. 
Hence, the fusion of these two methods showed improved 
performance on the classification task. From Tables 3-5 
and Figure 4, it can be seen that normalisation reflected 
improvement in the performance of the classifier. There-
fore, the best performance in this study was obtained in 
3-sigma normalisation with FFPA features.

In the last decade, computer-aided diagnosis has been 
employed to classify LNs using ultrasound imaging. Ultra-
sound imaging includes many kinds of features, such as 
textural, elastographic, and morphological features, which 
are useful for classification tasks. Elastographic features 
contain information about tissue stiffness. Ultrasound elas-
tography is a non-invasive technique used to achieve tissue 
deformation in response to compression [24]. Studies have 
used ultrasound elastography to classify benign and ma-
lignant LNs. Azizi et al. [18] used shear-wave elastography 
(SWE) to evaluate stiffness in cervical LN by measuring 
shear-wave velocity (SWV) on ultrasound images. They 
achieved a sensitivity of 92.52%, specificity of 75.46%, PPV 
of 48.54%, NPV of 97.60%, and of 0.88 in classifying be-
nign and malignant cervical LNs. Cheng et al. [20] achieved 
a sensitivity of 78.9%, specificity of 74.4%, accuracy of 77%, 
and Az of 0.855 using SWV measurements. Park et al. [19] 
combined SWE and ultrasound imaging to distinguish be-
nign from malignant cervical LN metastases in PTC with 
a sensitivity of 44.6%, specificity of 87.1%, PPV of 65.9, 
NPV of 73.8%, and of 0.667 for central LNs and a sensitivity 
of 95.8%, specificity of 58.4%, PPV of 14%, NPV of 99.5%, 
and Az of 0.924 for lateral LNs. In a study by Acu et al. [25], 
the strain index from ultrasound images classified benign 
and malignant cervical LNs with a sensitivity, specificity, 
and accuracy of 71.6%, 76.5%, and 75.0%, respectively. 

Morphological features describe margin irregulari-
ty, symmetry, and shape of the tumour surface. In this 
regard, Chmielewski et al. [10] extracted morphological 
parameters from normalised signed distance (NSD) trans-
forms to classify benign and malignant axillary LNs and 
achieved a sensitivity and specificity of 90% and an Az of 
0.95. Jeong et al. [11] showed that the Yonsei Estimated 
Value (YEV) scoring system is useful; they achieved a per-
formance in which sensitivity, specificity, PPV, and NPV 
were 76.3%, 69.8%, 56.7%, and 85%, respectively. Desmots 
et al. [12] extracted morphological features from ultra-
sound images and classified cervical LNs with a sensitivity 
of 80%, specificity of 94%, PPV of 92%, NPV of 83%, and 
Az of 0.885. Acu et al. [25] indicated that morphological 
features can classify benign and malignant LNs with 97% 
sensitivity, 31.4% specificity, and 51.3% accuracy.

Figure 4. The diagrams of the ROC curves for texture analysis method in 
Fisher (A), POE+ACC (B), and FFPA feature reduction method (C)
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In texture analysis methods, Chen et al. [13] used 
a combination of texture features based on the co-occur-
rence matrix and neighbouring grey-level dependence 
matrix (NGLDM) to classify benign and malignant LNs 
on ultrasound images. They achieved a 100% classification 
accuracy using a support vector machine classifier. In an-
other study, Zhang et al. [14], used features based on the 
co-occurrence matrix and presented a good classification 
of benign and malignant cervical LNs with an Az of 0.827. 
Chang et al. [15] utilised seven texture feature subsets to 

characterise LNs in ultrasound images. They subdivided 
LNs into six groups and reached average accuracy, sensi-
tivity, and specificity rates of 99.10%, 96.43%, and 99.53%, 
respectively, in the classification task. 

Another technique that can be used to differentiate 
benign from malignant LNs is contrast-enhanced ultra-
sound (CEU). Dudau et al. [16] indicated that CEU was 
useful for classifying LNs. They classified benign and ma-
lignant LNs with a sensitivity of 100% and specificity of 
85.7%. Rubaltelli et al. [26] indicated that CEU showed 
100% sensitivity and 99.5% specificity in classifying LNs.

In some studies, features from different groups were 
combined to achieve the best performance. Zhang et al. 
[14] combined texture and morphological features from 
ultrasound images and indicated that the combined fea-
tures achieved better results in classifying LNs with an Az 
of 0.892 in comparison with texture alone (Az = 0.827). 
However, in a study by Acu et al. [25], elastographic fea-
tures had no additional value regarding the performance 
of morphological features.

In the current study, texture features from six main cat-
egories were analysed to differentiate between tumour-free 
(benign) and metastatic (malignant) LNs. These features 
presented a good classification with a sensitivity of 99.27%, 
specificity of 98.54%, accuracy of 98.90%, PPV of 98.55%, 
and NPV of 99.26%. The area under the receiver operat-
ing characteristic curve was 0.996. This means that about 
99% of patients with uncertain malignant or benign LNs 
can avoid unnecessary FNA if the texture analysis meth-
od introduced here is used to diagnose these patients. In 
comparison with the other texture analysis studies, we can 
achieve a higher accuracy in classification of tumour-free 
and metastatic cervical LNs [13-15]. All of them focused 
predominantly on co-occurrence matrix features. But this 
study implies additionally that wavelet-based texture fea-
tures play an important role in distinguishing tumour-free 
from metastatic cervical LNs. Wavelet has an advantage 
over other texture features groups die to has an informa-
tion in both spatial and frequency domains.

Three normalisations and three feature-reduction 
algorithms were employed and provided a total of six 
states per ROI. Each set was examined individually to 
determine the best features descriptor for differentiation 
between tumour-free and metastatic LNs. Based on the 
authors’ hypothesis, such conditions (under FFPA features 
and 3sigma normalisation) will classify groups with more 
confidence, and this was shown by the results. The results 
of the current study also indicate that texture features pos-
sess significantly greater discriminative ability than other 
features, such as morphology-, CEU-, and elasto graphy-
based features.

Although some effort has been made to investigate 
correlations between CEU features and pathological 
changes, the findings are quite controversial in the litera-
ture. In this regard, Dudau et al. [16] and Rubaltelli et al. 
[26] indicated that CEU features were promising in dif-

Figure 5. Sample distributions after texture analysis with FFPA features.  
A) default, (B) 3sigma, and (C) 1-99% normalisation. MDF – most discrim-
inating features; “1” and “2” represent tumour-free and metastatic lymph 
nodes, respectively
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ferentiating between benign and malignant LNs, but Tan 
et al. [17] achieved the opposite result. Furthermore, for 
Doppler, the resistive index (RI) and vascular index (VI) 
were not significantly correlated to LN metastasis [12,27]. 
In addition, Acu et al. [25] indicated that the accuracy of 
B-mode and Doppler sonography was higher than that 
of elastography, and elastography adds no additional in-
formation. Although Doppler, CEU, and elastography 
are still used in many centres, there remains the need for 
further research in this field. Despite all this, all previous 
studies have indicated that texture features have a higher 
accuracy than other sonographic features, and the present 
study confirms this.

Since the physician-referred cases were based on clin-
ical indications, other node characteristic features had 
no additional information and were not considered for 
TA and classification. This method is not suggested as an 
alternative to biopsy, but it can be applied to help radi-
ologists identify subtle changes and select patients with 
a high risk of malignant LNs for biopsy.

A previous study by the current authors indicated that 
texture analysis based on wavelet is a useful tool for dis-
criminating between benign and malignant thyroid nod-
ules, with 100% overall accuracy in ultrasound imaging 
[28]. The present study also proved that wavelet texture 
features have a high ability to classify LNs. The methods 
used in this study can aid radiologists in distinguishing 
between tumour-free and metastatic LNs in the target 
nodes and it can improve the overall accuracy of radiol-
ogists from an Az value of 0.865 to 0.900 [29]. The main 
advantage of this method is that there is no operator de-

pendency because the analysis is performed by the com-
puter. Moreover, it requires no additional time or costs.

There were several limitations in the current study. 
First, in the MaZda software, combination tools were not 
available. This made it difficult to perform some calcu-
lations. For example, the averaging of run-length matrix 
features of four different orientations was difficult. Sec-
ond, no diagnostics from radiologists were implemented 
in this study. The texture analysis results were compared 
only with pathology. Further investigation comparing 
the texture analysis results with radiologist diagnostics to 
evaluate the radiologists’ performance is needed. Third, 
the sonographic classification of the current study was 
compared with FNA biopsy results. Although FNA biop-
sy is highly sensitive for the diagnosis of malignancy, it 
cannot replace surgical biopsy. Hence, definitive results 
require surgical biopsy analysis.

Conclusions
In conclusion, a new approach based on texture analysis 

is proposed for the evaluation of LN metastasis 2-dimen-
sional sonography. Preliminary results indicate that texture 
features of a conventional ultrasound image can be used 
as a supplementary technique to improve the radiologist’s 
understanding of conventional ultrasound imaging in char-
acterising LNs.
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