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Abstract
Purpose: To detect foot ulcers in diabetic patients by analysing thermal images of the foot using a deep learning model 
and estimate the effectiveness of the proposed model by comparing it with some existing studies.

Material and methods: Open-source thermal images were used for the study. The dataset consists of two types of images 
of the feet of diabetic patients: normal and abnormal foot images. The dataset contains 1055 total images; among 
these, 543 are normal foot images, and the others are images of abnormal feet of the patient. The study’s dataset was 
converted into a new and pre-processed dataset by applying canny edge detection and watershed segmentation. 
This pre-processed dataset was then balanced and enlarged using data augmentation, and after that, for prediction, 
a deep learning model was applied for the diagnosis of an ulcer in the foot. After applying canny edge detection and 
segmentation, the pre-processed dataset can enhance the model’s performance for correct predictions and reduce 
the computational cost. 

Results: Our proposed model, utilizing ResNet50 and EfficientNetB0, was tested on both the original dataset and 
the pre-processed dataset after applying edge detection and segmentation. The results were highly promising, with 
ResNet50 achieving 89% and 89.1% accuracy for the two datasets, respectively, and EfficientNetB0 surpassing this 
with 96.1% and 99.4% accuracy for the two datasets, respectively. 

Conclusions: Our study offers a practical solution for foot ulcer detection, particularly in situations where expert 
analysis is not readily available. The efficacy of our models was tested using real images, and they outperformed other 
available models, demonstrating their potential for real-world application. 
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Introduction
Many factors contribute to diabetic foot ulcers (DFUs), 
including exercise, diet, and insulin therapy. A diabetic 
patient’s foot soles may have open lesions or lacerations 
due to these ulcers. As of 2019, approximately 463 million 
people were living with diabetes worldwide [1]. There are 
9.1 million to 26.1 million diabetic patients in the world 
who suffer from DFUs each year; 15 to 25% of them ex-
perience the condition at some point in their lives [2]. The 
complexity of DFU diagnosis and treatment results in al-
most a million diabetics losing a limb each year.

Several factors, including poor blood circulation, hy-
perglycaemia, nerve damage, and inflamed feet, cause foot 
ulcers. Other risk factors include inadequate hygiene, im-
proper clipping of toenails, eye disease, any kind of heart 
disease, kidney failure, excess fat or obesity, and consump-
tion of tobacco or alcohol.

Initial symptoms of DFUs encompass foot drainage, 
pain, paralysis, peculiar irritation, oedema, erythema, 
and odorous discharge. The most visible sign of signifi-
cant DFUs is the presence of black tissue surrounding the 
lesion due to insufficient blood supply to the ulcer’s vicin-
ity. Infections can lead to partial or complete tissue death 
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in this region, although it may take a while before ulcers 
become infected [3]. Additionally, weeks or sometimes 
months are required for DFUs to heal, with reappearance 
rates reaching 40% after one year, 60% after three years, 
and 65% after five years. Alarmingly, 14-24% of cases 
eventually necessitate lower extremity amputation [4].

The early detection of DFUs is crucial for effective 
treatment. If identified promptly, methods such as foot 
bathing, maintaining clean and dry skin around the ulcer, 
enzyme therapies, and bandages with calcium alginates 
can prevent growth of bacteria. However, as the condi-
tion worsens, severe surgery may become necessary for 
recovery or removal of the ulcer [5]. DFU diagnosis typi-
cally involves testing for secondary infections, X-rays to 
assess bone involvement, angiography, and other diagnos-
tic techniques.

To establish an accurate diagnosis, comprehensive 
medical data analysis is essential. Traditional diagnostic 
methods can be labour-intensive and prone to human er-
ror. Utilizing computer-assisted diagnostic procedures can 
enhance efficiency while reducing costs. Recent advances 
in mobile and ubiquitous health devices play a significant 
role in managing diabetes and its complications by moni-
toring inflammation and detrimental foot pressure [6]. 
Sensors, capable of detecting various types of chemical, 
physical and biological signals, offer a means to identify 
and record these captured signals. These sensors, initially 
developed for industrial applications, have found new ap-
plications in healthcare [7].

Medical imaging [8-11] is a cornerstone for diagnos-
ing various patient conditions in today’s digital healthcare 
landscape. The efficacy of traditional classification of ma-
chine learning (ML) and deep learning (DL) methods in 
medical imaging depends heavily on type of feature selec-
tion and extraction techniques, which are sensitive to the 
shape, size, and colour of the captured images. Research-
ers have achieved high accuracy in DFU detection using 
ML and convolutional neural network (CNN) techniques, 
although there is still room for broader real-world appli-
cations [12].

Early identification of DFUs in contemporary health-
care systems involves continuous surveillance and manage-
ment. To inform treatment plans, diabetic foot specialists 
conduct thorough examinations of DFUs along with addi-
tional diagnostic tests such as magnetic resonance imaging 
(MRI), X-ray and computed tomography (CT) scans [13]. 
However, to conduct and verify these tests, appropriate 
time, with frequent visits to hospitals and and specialists, is 
required, which can potentially worsen the disease before 
intervention. It underscores the prominence of a computer-
assisted diagnosis system capable of identifying DFUs be-
fore they become visually apparent [14].

The main purpose of this study was to detect foot ul-
cers using creation of a pre-processed dataset by apply-
ing edge detection and segmentation. Then for prediction 
a DL model was applied and the performance of the pro-

posed model was compared. The main contributions of 
this study are as follows:
•	 The objective of this study was to design and imple-

ment a comprehensive machine learning algorithm 
that can accurately and reliably differentiate between 
instances of diabetic foot ulcers (DFU) and normal 
foot conditions using thermal images. 

•	 The development of a model using a plantar thermo-
gram database facilitates early diagnosis by detecting 
elevated plantar temperatures before the occurrence 
of a DFU. The thermal measurements exhibit reduced 
susceptibility to the influence of the surrounding cir-
cumstances.

•	 To enhance the quality of the outcomes, it is recom-
mended that canny edge detection and watershed 
segmentation be used on images and a pre-processed 
dataset be created. This combination enables one to 
obain more clearly recorded local and global texture 
and shape information.

•	 The performances of the evaluated models are com-
pared with some existing studies.

•	 A critical aspect of the concept is the ability to do real-
time testing.
The rest of the paper is divided into various sections. 

Section 2 describes some related studies and their limita-
tions. The techniques used to design a pre-processed da-
taset for better prediction is defined in section 3. Section 
4 illustrates the proposed model, algorithm and math-
ematical equations used. Section 5 gives an overview of 
simulation software and performance metrics evaluation. 
Finally, section 6 presents the conclusion and future scope 
of research.

Related work

A comprehensive review of relevant literature was under-
taken to learn about the current body of research. The 
following content summarizes the scholarly articles about 
the relevant research.

In one study, the authors conducted a widespread 
examination of the existing literature on the utilization 
of artificial intelligence (AI) in monitoring DFUs [15]. 
The study discussed the advantages of these techniques 
and highlighted the challenges associated with integrat-
ing them into a functional and dependable structure for 
effective management of remote patients. This research 
examines the imaging methods and optical sensors used 
to detect diabetic foot ulcers. The investigation takes into 
account the characteristics of the sensors as well as the 
physiological aspects of the patient. The data source sup-
ported various monitoring strategies, which imposed con-
straints on AI technologies.

In another study [13], a unique CNN model was cre-
ated to classify healthy and abnormal skin automatically. 
This CNN was trained using a dataset of 754 colour pho-
tographs of DFUs and normal skin samples obtained from 
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the diabetes centre at Nasiriyah Hospital. An expert in 
DFU manually annotated the database in order to cre-
ate the ML model. The region of interest (ROI) dimen-
sions were adjusted to 224 × 224 pixels. This modifica-
tion resulted in a substantial area encompassing the ulcer, 
including crucial tissues from the normal and DFU cat-
egories. A trained expert then proceeded to annotate the 
clipped patches. The researchers used the DFU_QUTNet 
classifier to evaluate the performance of their model. The 
acquired F1-score was 93.24%. Additionally, they inte-
grated network characteristics with an support vector 
machine (SVM) classifier, resulting in an improved per-
formance of 94.5%.

Researchers [16] proposed the use of a non-invasive 
photonic-based apparatus as a potential treatment mo-
dality for addressing DFUs in patients diagnosed with 
problem of diabetes. The apparatus used the principles of 
hyperspectral and thermal imaging to evaluate the condi-
tion of a foot ulcer. The biomarkers of oxyhaemoglobin 
and deoxyhaemoglobin were estimated using photonic 
based imaging. By using super-resolution methods, the 
apparatus underwent enhancements via the incorporation 
of signal processing technologies that use deep learning 
algorithms to increase pixel accuracy and reduce noise.

In a study [17], the authors proposed using a special-
ized network called Dfu_SPNet, which is constructed us-
ing parallel stacked convolution layers, to classify the data 
of ulcer images. Dfu_SPNet used parallel convolution lay-
ers with three distinct kernel sizes in the context of feature 
abstractions. Dfu_SPNet achieved a superior performance 
compared to the current state-of-the-art results, as shown 
by its area under the curve (AUC) score of 97.4%. This no-
table improvement was seen after training the Dfu_SPNet 
model on the dataset, using the stochastic gradient de-
scent (SGD) optimizer with a learning rate of 1e-2.

In a study [18], DFU classification using CNN was 
performed, and the researchers used RGB, i.e. 3 channel 
images, and corresponding information of texture as in-
puts for the proposed CNN model. The researchers found 
that the suggested framework exhibits superior classifica-
tion performance compared to conventional RGB-based 
CNN models. The study’s first phase involved using the 
mapped binary pattern approach to gather the texture in-
formation of the RGB image. The mapped image gener-
ated from the ulcer texture information was used in the 
second step to aid in identifying DFUs. The CNN received 
a tensor input that is called a fused image, which is com-
posed of a linear combination of the RGB and mapped 
binary pattern. The model achieved an F1 score of 95.2%.

In a further investigation [19], the authors used a da-
taset consisting of 50 thermograms captured at a dis-
tance of one foot. The classification task was carried out 
using a traditional machine-learning methodology. The 
intensity values of thermograms from both normal and 
diabetic feet were used to generate grey texture features. 
These features were then utilized as the input for the clas-

sifier model SVM. The accuracy of classification was de-
termined to be 96.42%. 

In a study [20], the authors used 33 thermographic 
images of the plantar foot region, including persons with-
out any medical conditions and those diagnosed with type 
2 diabetes. The decomposition of foot images was done 
using the discrete wavelet transform (DWT) with tech-
niques of higher order spectra (HOS). The generated de-
composed images were further used to find different tex-
ture and entropy attributes. The SVM classifier achieved 
a 81.81% sensitivity score, 89.39% accuracy, and a speci-
ficity of 96.97% based on a limited set of five features.

The authors of another study [21] devised an innovative 
skin tele-monitoring system that utilizes a smartphone to 
improve the medical diagnosis and decision-making pro-
cess in assessing DFU tissue. In order to accurately identify 
tissues and label the ground facts, a dataset consisting of 
219 photos was used. A graphical interface was also devel-
oped based on the super pixel segmentation technique. The 
system’s method included a thorough examination of DFU, 
including automated ulcer segmentation and categoriza-
tion. The retrieved super pixels serve as the training input 
for the deep neural network, and classification at the patch 
level was performed. The model under consideration had 
an accuracy of 92.68% and a DICE score of 75.74%. An 
alternative methodology [22] extracted features from the 
CNN model known as Densenet201. These features were 
then inputted into a SVM classifier to facilitate the diag-
nosis of DFUs.

Several other studies have examined the location of 
infection in conjunction with its categorization. In a study 
[23], a CNN architecture consisting of 16 layers was pre-
sented for the purpose of classifying infection/ischemia 
models. The process included extracting deep features, 
which were then used as the input for a range of machine 
learning classifiers in order to assess the performance of the 
model evaluation metrics. In addition, the researchers used 
gradient-weighted class activation mapping (Grad-CAM) 
to visually represent the prominent characteristics of an 
infected zone, hence facilitating a more comprehensive in-
terpretation after the classification process. The photos were 
inputted into a YOLOv2-DFU network to identify and lo-
calize affected regions. The suggested model demonstrated 
an accuracy of 99% for infection classification and 97% for 
ischemia classification. In order to identify and pinpoint 
areas of the foot that are affected by unhealthy conditions, 
the researchers achieved an intersection over union (IOU) 
score of 0.98 for ischemia and 0.97 for infection.

In other research [24], a thorough examination of 
model scaling was undertaken, revealing that the meticu-
lous optimization of network breadth, depth, and resolu-
tion may achieve performance enhancements. Based on 
the result above, a unique scaling approach was proposed, 
which used a simple but very effective compound coef-
ficient to uniformly scale all three parameters. A baseline 
network was developed using neural architecture and then 
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expanded to generate the EfficientNets series of models. 
These models show superior performance compared to 
previous convolutional neural networks (ConvNets) in 
terms of effectiveness and accuracy. Additionally, they 
exhibited the advantages of smaller size and quicker in-
ference speed. Notably, the EfficientNets achieved an ac-
curacy rate of 84.3% on the ImageNet dataset.

Furthermore, there is a limited body of research that 
has used thermal imaging of the foot, since the majority of 
studies have relied on visual foot images that are vulnerable 
to fluctuations in the surrounding environment. In order 
to address these constraints, we have devised a dependable 
and entirely automated computer-aided design compatible 
model based on DL techniques for the purpose of diagnos-
ing DFUs. Thermal imaging was selected as the preferred 
method for monitoring the distribution of temperature 
over the foot, with the aim of aiding in the timely detection 
of DFUs. In addition, the thermal images exhibit reduced 
susceptibility to the influence of the surrounding environ-
ment. In addition, before testing the model for better pre-
dictions and accuracy the pre-processing techniques canny 
edge detection and watershed segmentation were applied 
and a pre-processed dataset was created. Canny edge detec-
tion highlights the edges in an image, providing important 
features for subsequent analysis. These edges can capture 
important structures and boundaries in the image, which 
can be useful for classification tasks [8]. Edge detection can 
also help reduce noise in the image by emphasizing only the 
most significant edges. This can also improve the quality of 
the input data for classification algorithms, leading to more 
accurate results. Watershed segmentation can partition the 
image into regions based on gradients and intensities, ef-
fectively separating different objects or regions of interest 
[25]. This segmentation can help isolate individual objects 
or areas within the image, making it easier for the classifier 
to focus on relevant features. 

Material and methods

Dataset

A thermogram image dataset was used for this study [14]. 
The dataset consists of two type of images – normal and 
ulcer. In total, 1055 images are present in the dataset; 

among these images, 543 are normal and the rest are of 
ulcers. A sample of normal feet images from dataset is 
shown in Figure 1, while Figure 2 shows sample images 
of abnormal feet from the dataset. Both types of files are 
organized in separate folders named normal and ulcer re-
spectively and labelled with numbering.

Canny edge detection

The images in the dataset were transformed using the 
canny edge detection technique. Canny edge detection is 
a technique widely used in computer vision for detect-
ing edges in images. Since its creation in 1986 by John F. 
Canny, it has evolved into one of the industry norms for 
edge detection. The basic steps involved in the process are 
as follows: The input image is smoothed, Eq. 1 represents 
the equation of the 2D Gaussian function, and edges of 
the image are detected using the Sobel filter. The Sobel 
operator calculates the gradient xG in the x direction and 

yG  in the y direction using the kernel given in Eq. 2 and 
3. After this, suppression of type non-max is applied and 
the local maximum pixels in the gradient direction are 
reserved; the rest of the pixels are blocked. Eq. 4 and Eq. 5 
represent the gradient magnitude and gradient direction 
respectively. The thresholding is applied to remove the 
pixels which are less than a certain threshold value and 
pixels are considered if above a certain threshold value 
to remove the edges that could be formed due to noise. 
Finally, hysteresis tracking is applied with the two thresh-
olds highT  and lowT to classify pixels as strong, weak and 
no edge [8, 26].
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Figure 1. Sample images of normal feet from the dataset

	 Normal-1	 Normal-16	 Normal-21	 Normal-52

	 Normal-55	 Normal-78	 Normal-94	 Normal-114

	 Abnormal-1	 Abnormal-26	 Abnormal-47	 Abnormal-77

	 Abnormal-107	 Abnormal-131	 Abnormal-147	 Abnormal-172

Figure 2. Sample images of abnormal feet from the dataset
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Where GM(x, y) represents gradient magnitude and 
(x, y)θ represents gradient direction.

Watershed segmentation

The watershed algorithm is a method of separating images 
that relies on watershed transformation. The segmentation 
method relies on the relative similarity of neighbouring 
pixels in the image as a crucial point of reference for link-
ing pixels with similar spatial coordinates and grey values.

The watershed method uses topographic information to 
partition an image into distinct parts. The method considers 
the image as a topographic surface and uses pixel intensity 
to locate catchment basins. Starting locations are designated 
local minima, and catchment basins are filled with colours 
until the object’s limits are reached. The segmentation pro-
cess gives distinct colours to certain areas, facilitating the 
identification of objects and the study of images [25, 27].

The whole procedure of the watershed algorithm may 
be succinctly outlined via the following steps:
1.	 Placement of marker – the watershed segmentation 

involves strategically placing markers on the local 
minima, the lowest points in the image. These markers 
serve as the initial reference points for the subsequent 
flooding process.

2.	 Flooding – it is a key technique in the watershed meth-
od, involves saturating the image with various colours, 
starting from the markers. This colour dispersion grad-
ually fills the catchment basins, extending beyond the 
borders of the objects or regions depicted in the image.

3.	 Formation of catchment basins – the process of colour 
dispersion leads to the progressive filling of catchment 
basins, resulting in the segmentation of the image. The 
segments or areas obtained are allocated distinct co-
lours, which may be used to distinguish various items 
or characteristics within the image.

4.	 Identification of boundaries – the watershed method 
employs delineating borders between distinct coloured 
sections to ascertain the presence of objects or regions 
within the image. The segmentation obtained may be 
used for many applications, such as object identifica-
tion, image analysis, and feature extraction.

Data augmentation

In order to operate efficiently, deep learning model re-
quires a substantial amount of labelled training data. In 
addition, gathering a large amount of medical data is 

costly and difficult. In order to enhance the performance 
of the deep learning model and avoid the problem of over-
fitting, the data augmentation technique is used. Various 
image processing methods are used for data augmentation 
to achieve the intended outcomes, such as resizing, rota-
tion, and translation.

Resizing – Through this dimensions of the image are 
changed. Let 0I  be the original image with dimensions 

0 o 0(H , W ,C ) , where 0H is height, oW is width and 0C is 
number of channels. Resizing is calculated by Eq. 6.

' ' '
0 0 0 0I Resize(I ,H , W )= 			   (6)

Where ' '
0 0H , W  are the new height and width respec-

tively.
Random Rotation – Let 0I  be the original image. Ran-

dom rotation is calculated by Eq. 7.
'
0 0I rotate(I , )= θ 				    (7)

Where θ  is a random rotation angle.
Random Translation – Let 0I  be the original image. 

Random rotation is calculated by Eq. 8.
'
0 0 x yI translate(I , t , t )= 				   (8)

Where x yt , t  are random translation amounts in the 
horizontal and vertical directions respectively.

Random Flip – Let 0I  be the original image. Random 
flipping is calculated by Eq. 9. The flip operation can be 
horizontal or vertical, which will be chosen randomly.

'
0 0I flip(I )= 					     (9)

Gaussian Noise – Let 0I  be the original image. Gauss-
ian noise is calculated by Eq. 10.

'
0 0I I GaussianNoise( , )= + µ σ 		�   (10)

Where µ is the mean and σ is standard deviation of 
the Gaussian distribution.

Random Contrast – Let 0I  be the original image. Ran-
dom contrast is calculated by Eq. 11.

'
0 0 fI adjustcontrast(I ,C )= 		�   (11)

Where fC represents the random contrast factor.

Proposed model

This section provides an overview of the deep learning 
models used for the prediction of foot ulcer instances. 
The model is trained using a regression classifier utilising 
a scaled and filtered image dataset, after feature extrac-
tion using pre-trained models and filters. Figure 3 displays 
the block diagram of the suggested model, whereas Algo
rithm 1 illustrates the significant processes involved in the 
proposed model. The approach under consideration was 
assessed using the whole dataset, including both normal 
and diseased images. In the proposed method a new da-
taset is created by applying the canny edge detection and 
watershed segmentation on the images present in the da-
taset. In the first step canny edge detection is applied to 
all the images of the normal category and the abnormal 
category. After edge detection the watershed marker seg-
mentation is applied on the images obtained after edge de-
tection. All the converted images are subsequently stored 
in the two folders converted_normal and converted_ab-
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normal. Figure 4 shows an example image obtained after 
each step of the edge detection and segmentation. The 
output image obtained is the image of the new dataset. 
After creation of the new dataset, the data augmentation 
with six methods is applied to accomplish two goals – one 
to increase the size of the dataset for training of the mod-
els and another to balance the dataset as 543 images are 
normal and 512 are abnormal.

The following part provides a comprehensive analysis 
of the training, testing, and other factors. The classifica-
tion model utilises the Adam optimizer, which is based 
on SGD. The primary differentiating factor between 

Adam optimizers and SGD is in their updating processes. 
SGD calculates gradients as per a single training instance 
randomly to update the model’s parameters. In contrast, 
Adam combines the advantages of adaptive learning rates 
and estimates of first- and second-order moments of the 
gradients. This leads to more effective and efficient param-
eter updates. The learning rate in the Adam optimizer is 
adjusted dynamically during training by using averages of 
the parameters. Eq. 12 illustrates the loss function. Table 1 
illustrates the detailed parameters of the model.

t t L t trainG ( )F ( ,D )= ∇ θ θ 		�   (12)
Where, at time t , tG  represents the gradient of the 

loss function, the gradient operator is represented by ∇  ,  
tθ  – model parameters at time t , LF  – loss function and 

trainD  – training data. The first and second moments 
of the gradients are initialized by 0 and represented as 

0 0, 0=M V . Eq. 13 is used to update the first moment.
1 { 1} 1* (1 )*−= + −γ γt t tM M G 	�  (13)

Where 1γ  represents the exponential decay rate. The 
second moment estimate is updated using Eq. 14.

2
2 { 1} 2* (1 )*( )−= + −γ γt t tV V G 	�  (14)

Where 2γ  represents the exponential decay rate. Eq. 
15 and 16 are used for calculation of bias. 
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Model parameters are updated using Eq. 17
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Figure 3. Block diagram of proposed classification model

Start

Read thermal images

Apply pre-trained models

Apply data augmentationConversion in grayscale

Stop

Apply data augmentation  
on pre-processed dataset

Apply Canny edge detection  
and watershed segmentation

Split the dataset

Predictions

Figure 4. Sample of image obtained after edge detection and segmentation

Table 1. Parameters of the model

Parameter Value

Batch size 32

Image height and width 256 × 256

Number of classes 2

Validation split 0.2

Image augmentation Resizing, rotation, translation, flip, 
Gaussian noise, contrast

Learning rate callback Factor-0.1, Patience-5

Early stopping callback Patience-8

Base model EfficientNetB0, ResNet50

Top layer GlobalAveragePooling2D, 
BatchNormalization, Dropout, Dense

Dropout rate 0.45

Learning rate 0.001 

Optimizer Adam

Loss function SparseCategoricalCrossentropy
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Where learning rate is represented by α  and τ  is 
a small constant.

In the proposed models sparse categorical cross en-
tropy is used to measure the divergence between the pre-
dicted probabilities and actual probabilities of the dataset. 
Eq. 18 shows the cross entropy for single training. Eq. 19 
shows the average cross-entropy loss over the entire da-
taset.

,
1

, )0

exp( )
log

exp(−

=

 
 = −
 
 ∑

ii y
i C

i jj

p
L

p
	�  (18)

Where iL  is the loss for the thi  training sample, , ii yp  
is the logit corresponding to class j for the thi training 
sample. iy  is the true label for the thi training sample and 
C is the total number of classes.

,
11

, )0

exp(1 * log
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=
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avg Ci
i jj

p
L

N p
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Where N is the total number of samples.
Algorithm 1:

•	 Input – 1055 thermal images.
•	 Output – Prediction as normal or abnormal ulcer feet.
•	 Begin:
1.	 Load dataset with normal (D_normal) and abnormal 

(D_abnormal) images
2.	 Convert to grayscale
3.	 D C _ n o r m a l ,  D C _ a b n o r m a l = c a n ny _ e d g e _

detection(D_normal, D_abnormal)
4.	 DS_normal, DS_abnormal=watershed(DC_normal, 

DC_abnormal)
5.	 X_augmented=data_augmentation(DC) // Combined 

dataset
6.	 Train_X, Val_X=Split dataset for training and valida-

tion
7.	 Apply Resnet50 and EfficientNetB0 pre-trained model 
8.	 Compile the model using the Adam optimizer and 

sparse categorical cross entropy as the loss function
9.	 Train the model for 20 epochs and print the classifica-

tion report
10.	Test model on real data using Test_y. //Test_y contains 

images taken randomly from clinics
11.	Repeat steps 7 to 10 without edge detection and seg-

mentation.
•	 End.

Results and discussion
The model was simulated using Python 3.x , with a Jupy-
ter notebook on a system with primary memory of 16 GB 
and GPU of 4 GB, 8th Generation Intel PC [28]. For train-
ing and testing of the model an open source dataset of 
thermal images was utilized. The deep learning models 
Resnet50 and EfficientNetB0 were used for the analysis. 

Training of the models was done in two phases. In the 
first phase both models were trained and validated using 
the original dataset of thermal images and performance 
metrics were noted down. In the second phase the models 
were trained and validated using the pre-processed datas-
et created after applying edge detection and segmentation. 

The Adam optimizer was used to dynamically adjust 
the learning rate throughout training and sparse catego-
rization cross entropy was used to quantify the discrep-
ancy between the anticipated probability and actual prob-
abilities of the target dataset. Both models were trained 
for 20 epochs. EfficientNetB0 outperformed Resnet50 
as an individual feature extractor. The validation proce-
dure was further broken into two distinct steps. During 
the first phase, just the original image dataset was used 
to train pre-trained models. The models were first veri-
fied using a dataset that consisted of 20% of the whole 
dataset. The loss and accuracy metrics were then gener-
ated for ResNet50, with a loss of 0.0073 and an accuracy 
of 0.89. Similarly, for EfficientNetB0, the loss was 0.0067 
and the accuracy was 0.961 during the validation process. 
The second part of training and validation involved us-
ing the pre-processed dataset after performing edge de-
tection and segmentation. Both models were validated 
using the same ratio of training and validation datasets. 
The Resnet50 model computed a loss of 0.0064 and an ac-
curacy of 0.921, while the EfficientNetB0 model achieved 
a loss of 0.0056 and an accuracy of 0.994. The classifica-
tion report showed that the precision, recall, and f1-score 
for efficientNetB0 on the pre-processed dataset were 0.98, 
0.97, and 0.98, respectively. Figures 5A and B displays 
a graph illustrating the relationship between training ac-
curacy and validation throughout the training process 
for the ResNet50 model for the original dataset and pre-
processed dataset respectively. Figure 6A and B displays 
a graph illustrating the relationship between training ac-
curacy and validation throughout the training process for 
the EfficientNetB0 model for the original dataset and pre-
processed dataset respectively.

Following the completion of training and validation, 
the optimal model was then used to test actual photos 
obtained from a local physician. The process of edge de-
tection and segmentation was performed on all the im-
ages in order to generate a pre-processed test dataset. The 
clinic had a total of 16 photos, with 8 being normal foot 
photographs and the remaining photos showing infected 
feet. Once a pre-processed dataset was created, the Effi-
cientNetB0 model was evaluated using both the original 
collected photos and the images from the pre-processed 
dataset. Figure 7 displays the photos gathered from the 
test dataset. Figure 8 displays a portion of the code and its 
corresponding output.

Further, to verify the performance of the proposed 
model the best performing model was evaluated and 
compared with current state-of-the-art models [21-23]. 
The current models were trained using the original dataset 
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then evaluated in the actual environment. Table 1 presents 
a comprehensive comparison of all the results. By exam-
ining the table, it is evident that the suggested model has 
strong performance in terms of accuracy and F1 score. 

The F1 score is a metric that may be used to measure the 
accuracy of a model across all classes. It takes into account 
both precision and recall. The classifier’s assessment is de-
termined by its capacity to accurately recognise both posi-
tive and negative examples, which is particularly impor-
tant when dealing with imbalanced classes. The suggested 
model, which incorporates the pre-processing steps edge 
detection and segmentation, outperforms all other mod-
els. Table 2 clearly demonstrates that the suggested model 
achieved excellent performance with the present dataset. 
The dataset used in our analysis is much larger than the 
datasets used in previous relevant studies. The majority 
of other models typically captured between 700 and 1000 
images. Hence, based on this result, it can be said that the 
models exhibit diminished performance when evaluated 
on much bigger datasets.

Figure 8. Snippet of code for test data prediction

Figure 5. A) Plot for training and validation accuracy for ResNet50 with original dataset. B) Plot for training and validation accuracy for ResNet50 with 
pre-processed dataset

Figure 6. A) Plot for training and validation accuracy for EfficientNetB0 with original dataset. B) Plot for training and validation accuracy for EfficientNetB0 
with pre-processed dataset
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Conclusions
The article proposes a prediction model for diabetic foot 
ulcer that combines deep features with hand-engineered 
features utilising edge detection and segmentation tech-
niques. The model was tested in two steps. In the first 
phase, a model with two pre-trained networks was cre-
ated to predict the original image after data augmentation. 
This was done to balance and increase the dataset. In the 
subsequent stage, the model employed canny edge detec-
tion and watershed segmentation techniques to improve 
performance and decrease computational expenses. Ad-
ditionally, a fresh dataset was generated. The model was 
assessed using a Python Jupyter notebook with a dataset 
of 1055 photos. The dataset comprised 543 normal images 
while the remaining images were abnormal. Data aug-
mentation was conducted in both stages prior to training 

to equalise and expand the dataset. The first step yielded 
a best model with an accuracy of 0.961, but the second 
phase produced a model with an accuracy of 0.994. The 
model was further evaluated in a real-time setting using 
random thermal images and shown to be much superior 
to current state-of-the-art methods. In the future, the 
model may be improved and rendered more authentic by 
including IoT devices to input patient characteristics and 
photos, hence enabling generation of predictions.
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