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Abstract
Purpose: The aim of this study was to evaluate the diagnostic accuracy of an artificial intelligence (AI) tool in detecting 
endoleaks in patients undergoing endovascular aneurysm repair (EVAR) using dual-energy computed tomography 
angiography (CTA). 

Material and methods: The study involved 95 patients who underwent EVAR and subsequent CTA follow-up. Dual- 
energy scans were performed, and images were reconstructed as linearly blended (LB) and 40 keV virtual mono-
energetic (VMI) images. The AI tool PRAEVAorta®2 was used to assess arterial phase images for endoleaks.  
Two experienced readers independently evaluated the same images, and their consensus served as the reference 
standard. Key metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating charac-
teristic (ROC) curve (AUC), were calculated. 

Results: The final analysis included 94 patients. The AI tool demonstrated an accuracy of 78.7%, precision of 67.6%, 
recall of 10 71.9%, F1 score of 69.7%, and an AUC of 0.77 using LB images. However, the tool failed to process 40 keV 
VMI images correctly, limiting further analysis of these datasets. 

Conclusions: The AI tool showed moderate diagnostic accuracy in detecting endoleaks using LB images but failed to 
achieve the reliability needed for clinical use due to the significant number of misdiagnoses. 
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Introduction
Abdominal aortic aneurysm (AAA) is a common medi-
cal condition that affects approximately 5% of the gene-
ral population and is one of the leading causes of death 
in developed countries [1]. AAAs can lead to rupture, 
a catastrophic event with a high mortality rate exceed-
ing 80% [2]. Currently, the most prevalent and preferred 

treatment method for AAA is endovascular aortic repair 
(EVAR) [3]. However, this method is associated with 
specific complications, primarily due to its endovascular 
nature [4]. First described by White et al. [5], endoleak 
is a unique and potentially life-threatening complication 
in EVAR patients, characterised by persistent leakage of 
blood into the aneurysmal sac beyond the stent graft coat-
ing. Endoleak may cause further AAA sac expansion and 
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subsequent rupture. Therefore, current guidelines advise 
lifelong diagnostic follow-up for EVAR patients [6].

The current guidelines include a list of diagnostic 
modalities used in post-EVAR surveillance, with ultra-
sound and computed tomography angiography (CTA) 
being the most significant. CTA remains the primary di-
agnostic tool for the follow-up of patients after EVAR [4].  
It is easily accessible, reproducible, and allows for precise 
measurements and evaluations of potential complications 
with high diagnostic accuracy. Its variants, dual-energy 
CTA (DECTA) and photon-counting CTA (PCCTA), have 
also demonstrated high diagnostic value in post-EVAR 
surveillance [7-9]. DECT enables the creation of virtual 
monoenergetic images (VMIs), which replicate the at-
tenuation values of an image captured at a single energy 
level (typically within the range of 40-200 keV). Low-keV 
images (40-70 keV) can better reveal subtle contrast en-
hancements due to greater beam attenuation from iodine 
[10]. Both imaging modalities have shown the ability 
to improve diagnostic accuracy in endoleak detection, 
providing a superior contrast-to-noise ratio (CNR) that 
facilitates the identification of subtle endoleaks [11].  
The high diagnostic value of these images, exceeding that 
of classic reconstructions, has already been proven in re-
search [12,13].

The recent boom of artificial intelligence (AI) in medi-
cine has revolutionised the field, offering significant ad-
vancements in accuracy, efficiency, and personalised pa-
tient care. Recent advancements in AI algorithms in the 
medical field have made significant progress, especially 
within the field of radiology. Medical imaging, in par-
ticular, constitutes approximately 85% of FDA-approved 
AI programs as of 2023 [14]. AI has been proven to have 
high diagnostic capabilities for numerous tasks, among 
others, in oncology, paediatrics, dentistry, and vascular 
imaging [15-19]. AI has demonstrated superior diagnostic 
accuracy compared to clinical experts, streamlined work-
flows, and automated basic imaging analysis tasks [20]. 
The rapid evolution of AI in medical diagnostic imaging, 
particularly through deep learning technologies, has di-
versified its applications, making it a very promising tool 
in modern medical practice [5]. Despite very promising 
results, the use of AI in medical imaging is associated with 
multiple risks [21]. AI systems require rigorous validation 
to ensure their reliability across diverse clinical settings 
and patient populations. Inconsistent performance can 
undermine trust and effectiveness and, most important-
ly, can have a hazardous impact on patient health [22]. 
Therefore, continuous validation of AI algorithm function 
is mandatory for AI tool integration in clinical practice.

The detection of endoleaks following EVAR requires 
a time-consuming review of multislice CTA images by 
human readers. The process can be time-consuming and 
prone to potentially life-threatening errors. Additionally, 
with the increasing number of post-EVAR patients and 
the necessity for regular imaging, the number of examina-

tions is constantly increasing. Therefore, the application 
of AI tools could streamline the diagnostic process and 
increase the accuracy of assessments. Despite the expo-
nentially growing number of studies on AI utilisation in 
medical imaging, the automated evaluation of EVAR out-
comes by AI remains a topic with few published studies 
to date. Thus, the application of AI in detecting leaks, as 
well as the impact of VMI reconstruction on AI diagnostic 
parameters, seems to be very interesting.

Recent advances in the application of artificial intel-
ligence to medical imaging have been significant and have 
led to many new applications, including the detection of en-
doleaks. One of the recent applications is the PRAEVAorta®2 
software (Nurea, Belges,France), which enables the recon-
struction and visualisation of arteries and veins based on 
DICOM images. Based on tests conducted by the company, 
this software significantly accelerates endoleak detection 
through segmentation and achieves performance statistics 
comparable to those of human readers [23].

The aim of this study was to assess the diagnostic ac-
curacy of the aforementioned AI tool for evaluating en-
doleaks in post-EVAR CTA with linearly blended and 
VMI reconstructions. 

Material and methods
The Ethics Committee of Collegium Medicum at Nicolaus 
Copernicus University in Torun, Poland, approved the 
study (no. 440/2018). The study was carried out in compli-
ance with the Declaration of Helsinki and relevant guide-
lines. All participants provided written informed consent.

Population

The study involved 95 consecutive patients who under-
went EVAR procedures and were referred for 95 CTAs 
performed between August 2019 and December 2020. 
A follow-up examination was conducted for every pa-
tient one month after the stentgraft implantation proce-
dure. The inclusion criteria consisted of presence of an 
AAA and an age over 18 years. The exclusion criteria were 
known severe adverse reactions to iodinated contrast me-
dia, impaired renal function (glomerular filtration rate  
< 30 ml/min), and severe motion artifacts.

CT scanning protocol

All CT scans were obtained using a dual-energy fast-kVp 
switching scanner (Discovery 750 HD, GE Healthcare, 
Milwaukee, WI, USA). The standard examination pro-
tocol consisted of 3 phases: one nonenhanced phase and  
2 postcontrast dual-energy acquisitions (arterial and 60-s 
delayed phases). Both postcontrast phases were acquired us-
ing the following tube parameters: tube voltage, 80-140 kV; 
tube current, 360 mAs; pitch, 0.985:1; slice thickness, 
0.625 mm; and 35 cm DFOV. Intravenous administration 
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of 80 mL of iohexol (350 mg I/ml), a nonionic iodine con-
trast agent, through the peripheral vein at the forearm, 
was performed at a rate of 4 ml/min. The contrast agent 
was followed by a saline bolus chaser. A bolus tracking 
tool was used to trigger the start of arterial acquisition 
once the region of interest (ROI) in the proximal descend-
ing aorta exceeded 125 HU.

Image reconstruction

The data acquired during the dual-energy scan in the arte-
rial phase were reconstructed as follows:
1.  Linearly blended images (a fusion of 70% 140 kVp and 

30% 80 kVp datasets) closely resemble the traditional 
CT scan obtained with a single energy of 120 kVp.

2.  40 keV VMI.
All measurements were performed using a dedicated 

GE Healthcare console (GSI Viewer, Advantage Worksta-
tion Release 4.7, GE Healthcare).

Evaluation of human readers

Both datasets were independently assessed by 2 readers 
with at least 5 years of experience in CTA assessment.  
The endoleak types were evaluated according to the clas-
sification proposed by Karkkainen et al. [24]. Both readers 
were blinded to each other’s and the AI’s results.

The readers assessed the images using a biphasic pro-
tocol consisting of a true noncontrast and one postcon-
trast arterial phase. Since the AI program did not utilise 
the 60-second delayed phase in its assessment, it was not 
used in this study. After the reading sessions, the imag-
es were jointly evaluated, and a consensus on the pres-
ence and type of endoleak was reached. The consensus 
sequence subsequently served as the reference standard.

AI evaluation

The AI assessment of the collected datasets was car-
ried out using PRAEVAorta®2 software (Nurea, Bègles, 
France). According to the program’s protocol, only images 
acquired in the arterial phase of the examination were up-
loaded to the cloud-based AI platform. Two sets of images 
were uploaded:
1. Arterial phase LB images;
2. Arterial phase 40 keV VMI.

The program automatically generated reports on the 
presence of the endoleaks.

Statistical evaluation

To evaluate the results of the AI solution, a confusion 
matrix was created. Based on this matrix, 4 key evaluation 
metrics were calculated: accuracy, precision, recall, and 
F1 score. In addition, an ROC curve was plotted, and the 
AUC was calculated. 

Results

Patient population

One patient from the initial study group was excluded 
because they failed to meet our inclusion criteria (EVAR 
procedure due to aortic dissection). Ultimately, a total 
of 94 patients (14 women, 80 men; mean age 71.5 years, 
range 55-89) were included in the study. All CT scans 
were performed 30 days after stent graft implantation. In 
53 patients the scan area was limited to the abdominal 
cavity and pelvis, and in 42 patients the scan area also 
included the thorax. Sixty-eight patients underwent clas-
sic endovascular stent graft implantation for an AAA, and  
26 patients underwent branched or fenestrated EVAR.

Evaluation of human readers

The first study session included a protocol consisting of 
TNC and arterial phase LB images and revealed the pres-
ence of 44 endoleaks in 31 patients (32.9% of the total 
number of patients). Among the identified endoleaks, 
the most frequently diagnosed were type II endoleaks, 
which were diagnosed 18 times. Nine patients had at least 
2 endo leaks: 4 patients with type III endoleaks and 2 with 
type II endoleaks; 2 patients with 2 type II endoleaks;  
2 patients with type Ia and type III endoleaks; and one 
patient with 3 type II endoleaks.

Session II of the study included an evaluation of the 
TNC and an arterial phase 40 keV VMI. Both readers 
identified 50 endoleaks. Ten patients who had an endoleak 
in session II were not diagnosed with endoleak in session 
I with LB images. Of the 10 additional endoleaks detected 
in the VMI protocol, 8 type II endoleaks and 2 type III 
endoleaks were identified.

AI evaluation

Because the AI tool assigns data to 2 classes, the problem 
of endoleak detection can be treated as a binary classifica-
tion. Four measures were defined as follows: 
•	 TP – true positives: patients with endoleak classified 

with endoleak by AI tool;
•	 FP – false positives: patients without endoleak classified 

with endoleak by AI tool;
•	 FN – false negatives: patients with endoleak classified as 

no endoleak by AI tool;
•	 TN – true negatives: patients without endoleak classi-

fied as no endoleak by AI tool.
AI tool performance against human readers was evalu-

ated using accuracy, precision, recall, and F1-score with the 
formulas specified in paper by Saito and Rehmsmeier [25].

The first session of the study evaluated the images ac-
quired in the arterial phase – LB images. In contrast to 
human readers, an AI program did not show the number 
of endoleaks diagnosed in each patient. Patients were dia-
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gnosed regarding the presence of endoleaks. If they were 
present, the program reported the range of axial slices 
with endoleak presence. A greater number of endo leaks 
were not reported. In total, 34 patients were dia gnosed 
with endoleaks. The types of endoleaks were not re-
ported. AI evaluation of the LB images showed a total of  
34 patients with endoleaks. The confusion matrix pro-
vides a detailed breakdown of the AI program’s predic-
tions compared to the reference standard. The confusion 
matrix is depicted in Figure 1.

The second aim of the study was to assess whether  
40 keV VMIs influence the diagnostic accuracy of the 
program. The second session utilised 40 keV VMI im-
ages acquired in the arterial phase of the examination.  
However, after uploading the 40 keV datasets, the pro-
gram was unable to correctly define the lumen of the 
stentgrafts. Therefore, we were unable to conduct further 
analyses.

Evaluation metrics

Table 1 presents the key metrics calculated from the confu-
sion matrix, including accuracy, precision, recall, F1 score, 
and the area under the ROC curve (AUC).

The ROC curve, shown in Figure 2, illustrates the 
trade-off between the true positive rate and false positive 
rate for the AI program, with an AUC of 0.77, indicating 
the overall performance of the model.

Discussion
The results of this study demonstrate the moderate diag-
nostic accuracy of the evaluated AI program in endoleak 
detection in post-EVAR patients. The AI program evalu-
ated in this study showed a high level of accuracy (78.7%), 
balanced precision (67.6%), and recall (71.9%), with  
an F1 score of 69.7% and an AUC of 0.77. These find-
ings show that the program can aid in endoleak detection; 
however, a significant proportion of misdiagnoses cause 
us to conclude that it is not yet ready for commercial use.

Recent advancements in AI have introduced machine 
learning (ML) and deep learning (DL) tools to poten-
tially enhance the accuracy and efficiency of endoleak 
detection. AI models, particularly deep neural networks, 
have shown high accuracy, precision, and recall in detect-
ing endoleaks, often outperforming general radiologists 
and matching the performance of subspecialists [26-28].  
The study by Talebi et al. [26] evaluated the diagnostic per-

Figure 1. Confusion matrix for AI program endoleak detection

Table 1. Summary of AI program diagnostic accuracy metrics in endoleak detection (LB images)

Accuracy Precision Recall F1 Score AUC

78.72% 67.65% 71.88% 69.70% 0.77
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formance of the Endoleak Augmentor, a custom-designed 
ML model for endoleak detection. The authors demon-
strated the model’s high performance, with an accuracy, 
precision, and recall of 90%, 83%, and 100%, respectively. 
However, the study evaluated only 20 CTAs, 10 of which 
contained endoleaks. Hahn et al. [27] evaluated the per-
formance of the ResNet-50 convolutional neural network 
(CNN) in endoleak detection on individual axial slices.  
The CNN automatically assessed AAA and endoleak vol-
umes. The model showed an area under the receiver ope-
rating characteristic curve of 0.94 ± 0.03, with an optimised 
accuracy of 0.89 for endoleak detection. Additionally,  
the program precisely measured the AAA and endograft 
volume (Dice coefficient, 0.95 ± 0.2); however, the endole-
ak volume measurements were much less accurate (Dice 
coefficient, 0.53 ± 0.21). The authors concluded that the 
proposed CNN model can accurately detect and measure 

Figure 3. Endoleaks unidentified by the AI program: A – endoleak type Ia, B – endoleak type Ib, C – endoleak type II, D - endoleak type III

Figure 2. Receiver operating characteristic (ROC) curve for AI program  
endoleak detection (LB images)
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endoleaks after EVAR, potentially improving surveillance 
after the procedure. Kordzadeh et al. [28] evaluated the 
applicability of AI tools for the prediction, pattern recog-
nition, and modelling of post-EVAR complications [28].  
The accuracy of the training, validation, and predictive abil-
ity of the ANN in detecting endoleaks varied between types 
of endoleaks and ranged from 82% to 96%, with a predomi-
nance of values above 90%. Despite these promising results, 
our study showed lower diagnostic accuracy of the tested 
AI program, indicating the need for refinement. Figure 3 
shows obvious endoleaks not diagnosed by the AI program. 
It should be noted, however, that the aforementioned AI 
tools were research projects trained on sets of images ac-
quired in specific centres. The products tested in this re-
search showed less diagnostic accuracy; however, the da-
tasets used were probably different from the training data. 
This factor might have contributed to the lower diagnostic 
accuracy metrics. Our study evaluated the precommercial 
use of the program. We believe that some algorithm refine-
ments might improve the program’s diagnostic accuracy.

The tested AI tool was an experimental component 
of the PRAEVAorta®2 software, a fully automated tool 
designed for the segmentation and analysis of infrarenal 
AAAs using CT images. This tool aims to improve the 
accuracy and efficiency of diagnosing and planning treat-
ments for AAAs by providing detailed anatomical char-
acteristics. To date, a few studies have been published 
showing its high reliability in these tasks [23,29,30].  
The authors demonstrated the program’s high accuracy for 
aneurysm detection, delineation, and volumetric analysis. 
In contrast to our results, Coatsaliou et al. [30] reported 
the outstanding diagnostic accuracy of PRAEVAorta®2 
for detecting endoleaks in a group of 100 patients.  
The program achieved a sensitivity of 89.47%, specificity 
of 91.25%, PPV of 90.67%, and NPV of 90.12% in detect-
ing endoleaks. Such large differences in diagnostic accu-
racy probably stem from differences in the input datasets. 
This possibility is indicated by the fact that the program 
was unable to correctly segment structures on 40 keV da-
tasets. Therefore, we assume that LB images might not be 
optimal input data for the algorithm. This emphasises the 
necessity, as already indicated in the literature, of training 
the algorithm on many different datasets [21].

The follow-up of patients post-EVAR is crucial for 
monitoring complications such as endoleaks, aneurysm 
growth, and other morphological changes [6]. Studies 
have shown that AI holds promise in enhancing the ac-
curacy and efficiency of these follow-up processes, not di-
rectly including automatic endoleak detection. AI-driven 
models can predict postoperative outcomes, including 
mortality and complications after EVAR, by analysing 
large datasets to identify predictive patterns [31,32].  
AI tools such as augmented radiology for vascular aneu-
rysm (ARVA) provide accurate preoperative and postop-
erative assessments of aortic diameter, reducing the need 
for time-intensive manual measurements [33]. Moreover, 

AI tools might improve endoleak visualisation. A study by 
Kazimierczak et al. [34] evaluated the image quality pa-
rameters and diagnostic value of the DL-model denoising 
tool ClariCT.AI (ClariPI, Seoul, South Korea) for detect-
ing endoleaks. The authors showed substantial improve-
ments in objective and subjective image quality properties 
in DL denoised images. Taking into account all the pre-
sented data, we believe that the increasing use of AI tools 
in post-EVAR surveillance is inevitable.

The classic CTA examination protocol includes  
3 phases: one unenhanced phase and 2 postcontrast (arte-
rial and 60-second delayed) phases. The unenhanced 
phase distinguishes endoleaks from hyperdense areas such 
as calcifications, embolic materials, and coils [35]. Com-
mon diagnostic protocols use 2 postcontrast phases, with 
the delayed phase crucial for detecting low-flow endole-
aks not visible in the early phase [36,37]. Furthermore, 
some researchers suggest extending the delayed phase to 
300 seconds to identify additional endoleaks that remain 
undetected in the standard delayed phase [38]. Therefore, 
in our opinion, the approach based on diagnosing leaks 
solely from the arterial phase of the examination is con-
troversial and may result in a large number of false posi-
tive results (due to the misdiagnosis of calcifications as the 
endoleak) and false negative results (due to the presence 
of low-flow endoleaks).

Studies indicate that VMIs improve the diagnostic 
accuracy of endoleak detection [39,40]. The differences 
in the number of endoleaks diagnosed in both LB and 
40 keV CMIs stem from improved contrast and endoleak 
attenuation of VMI images. These findings were already 
shown in our 2023 study [12]. Similar results were shown 
by other researchers who evaluated the utilisation of low-
keV VMIs in endoleak detection [39,40]. The scientific 
literature indicates other potential benefits associated with 
the use of DECT in EVAR patient surveillance, such as 
improved stent visualisation and the possibility of reduc-
ing the radiation dose by replacing the TNC phase with 
virtual noncontrast reconstructions [12,37,41-47]. There-
fore, we regret that we were unable to assess the diagnos-
tic accuracy of the AI program on VMI images, and we 
believe that the joint use of AI and DECT reconstructions 
might provide better diagnostic accuracy and thus ensure 
better patient outcomes.

This study has several limitations that need to be ad-
dressed. First, the sample size of 94 patients, while suf-
ficient for preliminary analysis, is relatively small and 
may not fully represent the broader population of post-
EVAR patients. Second, the AI tool evaluated in this study 
showed limited effectiveness with 40 keV VMIs, suggest-
ing that the type of input data significantly affects its per-
formance. The inability to process these images correctly 
indicates that the AI algorithm needs further refinement 
to handle various image types effectively. Finally, the in-
ability of AI programs to classify the types of endoleaks 
significantly limits their clinical utility. Accurate classifica-
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tion of endoleak types is essential for appropriate patient 
management, and the lack of this feature reduces the ef-
fectiveness in clinical practice.

Conclusions
In conclusion, this study highlights the potential and cur-
rent limitations of AI in detecting endoleaks using dual-
energy CTA. The evaluated AI program demonstrated 
moderate diagnostic accuracy, with an accuracy rate of 
78.7%, a precision of 67.6%, and a recall of 71.9%. Despite 

these promising findings, the AI tool failed to achieve the 
high diagnostic performance necessary for reliable clinical 
application due to a significant number of false positives 
and negatives. 
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