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Abstract
Purpose: To evaluate the performance of a combined clinical-radiomics model using multiple machine learning 
approaches for predicting pathological differentiation in hepatocellular carcinoma (HCC).

Material and methods: A total of 196 patients with pathologically confirmed HCC, who underwent preoperative com-
puted tomography (CT) were retrospectively enrolled (training: n = 156; validation: n = 40). The modelling process 
included the folowing: (1) clinical model construction through logistic regression analysis of risk factors; (2) radio-
mics model development by comparing 6 machine learning classifiers; and (3) integration of optimal clinical and 
radiomic features into a combined model. Model performance was assessed using the area under the curve (AUC), 
calibration curves, and decision curve analysis (DCA). A nomogram was constructed for clinical implementation.

Results: Two clinical risk factors (BMI and CA153) were identified as independent predictors of differentiated HCC. 
The clinical model showed moderate performance (AUC: training = 0.705, validation = 0.658). The radiomics model 
demonstrated improved prediction capability (AUC: training = 0.840, validation = 0.716). The combined model 
achieved the best performance in differentiating HCC pathological grades (AUC: training = 0.878, validation = 
0.747).

Conclusions: The integration of CT radiomics features with clinical parameters through machine learning provides 
a promising non-invasive approach for predicting HCC pathological differentiation. This combined model could 
serve as a valuable tool for preoperative treatment planning.
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Introduction
The incidence of hepatocellular carcinoma (HCC), the 
predominant form of primary liver cancer, continues 
to rise globally, making it a significant cause of cancer-
related mortality [1,2]. Accurate preoperative assessment 
of HCC pathological differentiation is crucial because it 

directly influences treatment planning and patient out-
comes [3,4]. Evidence suggests that patients with well 
to moderately differentiated HCC demonstrate superior 
overall survival rates and lower recurrence risks compared 
to those with poorly differentiated tumours [5,6].

Although postoperative pathological examination re-
mains the gold standard for determining HCC differentia-
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tion, its invasive nature and potential sampling bias limita-
tions necessitate the development of reliable non-invasive 
alternatives [7,8]. Conventional imaging approaches using 
computed tomography (CT), magnetic resonance imaging 
(MRI), and ultrasound have shown limited success in pre-
dicting HCC differentiation grades, primarily due to their 
dependence on subjective radiological interpretation and 
restricted feature analysis [9-13]. 

Radiomics, an emerging field that transforms medi-
cal images into high-dimensional quantitative data, has 
demonstrated promising results in tumour characterisa-
tion [14,15]. Recent studies have successfully applied ra-
diomics analysis in various aspects of HCC management, 
including biomarker prediction, recurrence assessment, 
and survival prognosis [16-18]. However, research spe-
cifically focusing on radiomics-based prediction of HCC 
pathological differentiation remains limited, with unre-
solved questions regarding optimal classifier selection and 
model generalisability [19-21].

The present study aims to develop and validate a com-
bined clinical-radiomics model for preoperative predic-
tion of HCC pathological differentiation. By integrating 
clinical parameters with radiomics features and present-
ing the results through a practical nomogram, we seek to 
establish a more accurate and clinically applicable tool for 
personalised HCC treatment planning.

Material and methods

Ethical considerations

The institutional Ethics Committee of Youjiang Medical 
University for Nationalities approved this retrospective in-
vestigation (approval number: 2018010401) and waived 

the requirement for informed consent due to the study de-
sign. All procedures were performed in accordance with 
relevant guidelines and regulations.

Patients

A total of 242 patients with HCC who underwent preop-
erative CT examination between January 2018 and June 
2023 were initially considered for this study. The inclusion 
criteria were as follows: (1) histopathologically confirmed 
HCC; (2) availability of abdominal CT scans within  
2 weeks before surgery; (3) complete clinical and CT 
image data; and (4) willingness to provide follow-up 
information. Patients were excluded if they had: (1) un-
confirmed HCC diagnosis; (2) benign or mixed liver 
tumours; (3) incomplete clinical records; (4) CT images 
with significant artifacts or unclear lesions; (5) concurrent 
malignancies in other organs; or (6) lesions that could not 
be accurately delineated. After applying these criteria, 196 
patients were included in the final analysis (Figure 1). For 
the included patients, clinical information encompassed 
demographic data, laboratory test results, tumour mark-
ers, and detailed surgical/pathological reports. CT exami-
nations were performed with slice thickness ≤ 5 mm, and 
all images were confirmed to be free from significant arti-
facts or quality issues that might affect analysis.

CT examination

All CT examinations were performed using a GE Revolu-
tion 256-slice CT scanner (Revolution, GE Healthcare, USA). 
The scanning range covered from the diaphragm to the lower 
edge of the liver. The scanning parameters were as follows: 
collimator, 64 × 0.625 mm; rotation time, 0.80 s; pitch, 0.984; 

Figure 1. The workflow diagram showing the patient selection process. The study initially identified 242 HCC patients between January 2018 and June 
2023. After applying inclusion and exclusion criteria, 196 patients were finally enrolled and divided into training (n = 156) and testing (n = 40) cohorts
HCC – hepatocellular carcinoma, CT – computed tomography

HCC patients who underwent preoperative CT examination 
from January 2018 to June 2023 and whose differentiation type 

was determined pathologically (N = 242)

Final patients (n = 196). Among them, 61 cases were  
in the poorly differentiated group and 135 cases were  

in the non-poorly differentiated group

Training cohort 
(n = 156), 80%

Testing cohort 
(n = 40), 20%

Exclusion: 
1) Imaging studies suggestive of HCC but not confirmed by surgical pathology (n = 2)

2) Benign or mixed liver tumors (n = 2)
3) Incomplete patient clinical data or CT images (n = 37)

4) CT images with lesions obscured by artifacts or other factors affecting accurate ROI delineation (n = 2) 
5) Concomitant malignancies at other sites (n = 2) 

6) Lesions that could not be accurately delineated due to proximity with other lesions (n = 1)

Inclusion:
1) Histopathologically confirmed HCC

2) Abdominal CT scan within 2 weeks before surgery
3) Complete clinical and CT image data

4) Willing to provide follow-up data
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matrix, 512 × 512; field of view, 350 mm × 350 mm; tube 
voltage, 120 kV; tube current, 200-420 mAs; and slice thick-
ness and interval, 5 mm.

Patient groups and clinical data

The study cohort was randomly divided into training  
(n = 156, 80%) and validation (n = 40, 20%) groups. Clini-
cal data included laboratory parameters (including albu-
min, alanine aminotransferase (ALT), aspartate amino-
transferase (AST), a-fetoprotein (AFP), cancer antigens 153 
(CA153), cancer antigens 199 (CA199), carcinoembryonic 
antigen (CEA), and microvascular invasion (MVI) etc.), de-
mographic information (age, gender), and relevant clinical 
history (smoking and drinking). HCC differentiation was 
classified according to World Health Organisation criteria 
[22], with patients categorised into poorly differentiated 
and non-poorly differentiated (moderately and well differ-
entiated) groups.

Image preprocessing and segmentation

CT images were preprocessed using Pyradiomics (version 
3.7.12) with standardisation to 1 × 1 × 1 mm voxel spac-
ing. Two radiologists (with 12 and 5 years of experience in 
abdominal imaging) independently performed tumour seg-
mentation on non-enhanced CT images using ITK-SNAP 
software. Inter-observer agreement was assessed using 
intraclass correlation coefficients (ICC). Any discrepan-
cies were resolved through consensus or consultation with 
a senior radiologist.

Radiomics feature extraction

A total of 1834 radiomics features were extracted from 
each ROI using Pyradiomics (version 3.7.12). Among these 
features, wavelet-based texture features were computed 
through a 3-step process. Taking ‘wavelet_LHL_glcm_ 
InverseVariance’ as an example:
1)  the wavelet transformation was applied to decompose 

the original image:
W(a,b) = (1/√|a|) ∫ f(t) O ψ((t – b)/a)dt

where the LHL sub-band represents high-frequency com-
ponents in the x and z directions and low-frequency com-
ponents in the y direction;
2)  the Gray-Level Co-occurrence Matrix (GLCM) P(i,j) 

was computed from the wavelet sub-band:
P(i,j) = N(i,j) / ∑∑N(i,j)

where N(i,j) represents the frequency of occurrence of 
pixel pairs with values i and j;
3)  the inverse variance was calculated as:

Inverse variance = ∑∑P(i,j) / (1 + (i – j)²)

where i and j are the row and column indices in the 
GLCM, quantifying local homogeneity of the texture.

These features included the following: first-order sta-
tistics, shape-based features, and texture features derived 
from Grey Level Co-occurrence Matrix (GLCM), Grey 
Level Correlation Matrix (GLDM), Grey Level Run Length 
Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), 
and Neighbourhood Grey Level Tone Difference Matrix 
(NGTDM).

Feature selection and radiomics score calculation

The radiomics features underwent sequential process-
ing: (1) normalisation through regularisation; (2) Spear-
man correlation analysis with correlation threshold of 0.9; 
(3) Mann-Whitney test with p < 0.05 significance level; 
and (4) LASSO regression with 10-fold cross-validation 
for feature selection. The optimal lambda value in LASSO 
regression was determined through 10-fold cross-valida-
tion, mathematically expressed as:

λ_optimal = argmin_λ {(1/10) ∑i MSE_i(λ)}

where MSE_i(λ) represents the mean squared error for 
the i-th fold validation set using regularisation parameter λ. 
This process involved the following: 1) dividing the da-
taset into 10 equal-sized subsets; 2) training the model 
on 9 subsets and validating on the remaining subset;  
3) computing MSE for each validation; 4) averaging MSE 
across all 10 folds; and 5) selecting the lambda value that 
minimised the average MSE.

The final radiomics score was calculated using the 
formula: Rad score = β0 + β1X1 + β2X2 + ... + βnXn, 
where βn represents the coefficient and Xn represents the 
selected feature. The workflow is illustrated in Figure 2.

Model development

Clinical variables were analysed using univariate and mul-
tivariate logistic regression to identify independent pre-
dictors of HCC differentiation (p < 0.05). The selection of 
machine learning classifiers was based on computational 
efficiency and clinical interpretability considerations. Giv-
en our dataset size (n = 196) and available computational 
resources, we prioritised models that provided optimal 
performance while maintaining interpretability. Advanced 
ensemble methods such as XGBoost and Random Forest 
were not included due to their high computational over-
head and reduced interpretability in clinical settings. For 
the radiomics model, 6 machine learning classifiers were 
evaluated: logistic regression, support vector machine, 
K-nearest neighbour, extra trees, light gradient boosting 
machine, and multilayer perceptron. The best-performing 
classifier was selected based on the area under the receiver 
operating characteristic curve (AUC) in the validation set. 
Five-fold cross-validation was performed to ensure model 
robustness.
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A combined model was then constructed by integrat-
ing the optimal radiomics model with significant clinical 
predictors. Model performance was assessed through re-
ceiver operating characteristic (ROC) curve analysis, and 
the DeLong test was used to compare AUCs between dif-
ferent models. A nomogram was developed to facilitate 
clinical implementation of the combined model. Decision 
curve analysis (DCA) was performed to evaluate the clini-
cal utility of each model.

Statistical analysis

Continuous variables were compared using Student’s  
t-test or the Mann-Whitney U test based on their distribu-
tion (assessed by the Shapiro-Wilk test), while categorical 
variables were analysed using the c2 test. Clinical cha-
racteristics analysed included BMI, CA153, CA199, pro-
thrombin, gender, smoking status, alcohol consumption, 
hepatitis history, age, albumin, ALT, AST, AFP, CEA, and 
MVI status.

Feature selection involved multiple steps: (1) cor-
relation analysis using Spearman coefficients (threshold  
> 0.9 for removal); (2) recursive feature elimination; and 
(3) LASSO regression for final feature selection. Model 
performance metrics included sensitivity, specificity, ac-
curacy, and AUC. All statistical analyses were performed 
using Python (version 3.7.12), with p < 0.05 considered 
statistically significant.

Results

Patient characteristics

The study included 196 patients with histologically 
confirmed HCC, divided into training (n = 156) and test-
ing (n = 40) cohorts. Baseline characteristics of both co-
horts are presented in Table 1. The mean age was 50.54  
± 11.58 years in the training cohort and 52.52 ± 10.94 years 
in the testing cohort. Most patients were male (84.71% in 
the training cohort and 80.00% in the testing cohort). In 
both cohorts, most patients had hepatitis (80.77% and 
72.50%, respectively) and normal albumin levels (74.36% 
and 77.50%, respectively). Between the training and test-
ing cohorts, significant differences were observed in BMI 
(22.49 ± 3.48 vs. 21.92 ± 3.14 kg/m2, p = 0.006) and MVI 
status (37.82% vs. 40.00%, p = 0.049). Other clinical pa-
rameters, including tumour markers (CA153, CA199, AFP, 
CEA), liver function tests (ALT, AST), and demographic 
characteristics showed no significant differences between 
the cohorts (all p > 0.05).

Univariate and multivariate logistic analysis  
and construction of clinical models

Univariate and multivariate logistic analyses were per-
formed to identify predictive factors for the pathologi-
cal differentiation in HCC patients. Univariate analysis 

Figure 2. Radiomics workflow showing the process of ROI segmentation, feature extraction, feature selection, and prediction model development
Abbreviations: ROC – receiver operating characteristic, DCA – decision curve analysis
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identified 13 variables significantly associated with HCC 
differentiation (p < 0.05), including sex, smoking status, 
drinking status, hepatitis, age, albumin, ALT, AST, AFP, 
BMI, prothrombin, MVI, and CA153 (Table 2). In the 
subsequent multivariate analysis, only BMI (OR: 0.923, 
95% CI: 0.875-0.973, p = 0.013) and CA153 (OR: 1.061, 
95% CI: 1.020-1.102, p = 0.012) remained as independent 
predictors. The clinical model achieved AUCs of 0.705 
(95% CI: 0.617-0.794) in the training cohort and 0.658 
(95% CI: 0.472-0.844) in the testing cohort (as shown in 
Figure 4C and D).

Radiomic feature selection and radiomics score

A total of 1834 radiomic features were extracted from 
tumour ROIs on preoperative CT images, encompassing 
first-order statistics, shape-based features, and texture pa-
rameters (GLDM, GLRLM, GLSZM, and NGTDM).

The LASSO regression analysis was performed for 
feature selection and dimensionality reduction (Figure 3). 
The coefficient paths of different features are shown in 
Figure 3A, where the vertical dashed line indicates the op-
timal lambda value (λ = 0.0391). Figure 3B demonstrates 
the mean squared error at varying lambda values during 
10-fold cross-validation. At the optimal lambda, 5 non-
zero coefficient features were selected from the training 
cohort. The relative importance and coefficient values of 
these selected features are presented in Figure 3C.

The radiomics score was calculated using the follow-
ing formula:

Rad_score = 0.30128205128205127
+0.005545 · exponential_gldm_LargeDependence-

LowGrayLevelEmphasis 
+0.021482 · lbp_3D_m1_glszm_GrayLevelVariance 
+0.014065 · lbp_3D_m2_gldm_DependenceVariance 
+0.078159 · square_glcm_InverseVariance 
+0.040663 · wavelet_LHL_glcm_InverseVariance

Radiomics model establishment and selection

Six machine learning classifiers were evaluated to deve-
lope the radiomics model, including logistic regression 
(LR), support vector machine (SVM), k-nearest neigh-
bours (KNN), extra trees, light gradient boosting ma-
chine (LightGBM), and multilayer perceptron (MLP). 
The ROC curves in Figures 4A-B provide a comprehen-
sive compa rison of the discrimination performance of the 
different radiomics models evaluated in this study. The 
LightGBM algorithm achieved the highest performance 
with AUCs of 0.840 (95% CI: 0.775-0.905) in the train-
ing cohort and 0.716 (95% CI: 0.537-0.894) in the testing 
cohort (Figure 4A and B). Based on its superior perfor-
mance, LightGBM was selected for the construction of 
the final radiomics model. Therefore, when building the 
integrated combined model combining clinical features 

Table 1. Clinical characteristics of patients in the training and testing  
cohorts

Feature name Train-label  
(n = 156)

p-value Test-label  
(n = 40)

p-value

BMI (kg/m2) 22.49 ± 3.48 0.268 21.92 ± 3.14 0.006*

Prothrombin 12.83 ± 7.56 0.287 11.52 ± 1.86 0.989

Age (years) 50.54 ± 11.58 0.516 52.52 ± 10.94 0.685

CA153 15.03 ± 8.59 0.137 15.12 ± 14.38 0.977

CA199 42.39 ± 101.56 0.753 32.27 ± 62.02 0.876

Sex 0.206 1.0

Female 23 (14.74) 8 (20.00)

Male 133 (84.71) 32 (80.00)

Smoke 0.921 0.608

No 97 (62.18) 25 (62.50)

Yes 59 (37.82) 15 (37.50)

Drink 1.0 0.219

No 87 (55.77) 28 (70.00)

Yes 69 (44.23) 12 (30.00)

Hepatitis 0.496 1.0

No 30 (19.23) 11 (27.50)

Yes 126 (80.77) 29 (72.50)

Albumin (g/dl) 1.0 0.781

Normal 116 (74.36) 31 (77.50)

Abnormal 40 (25.64) 9 (22.50)

ALT (U/l) 0.993 1.0

< 40 98 (62.82) 28 (70.00)

≥ 40 58 (37.18) 12 (30.00)

AST (U/l) 0.577 0.763

< 40 86 (55.13) 23 (57.50)

≥ 40 70(44.87) 17 (42.50)

AFP (ng/mL) 0.257 0.219

< 25 62 (39.74) 21 (52.50)

≥ 25 94 (60.26) 19 (47.50)

CEA (ng/ml) 0.562 0.571

< 5 141 (90.38) 37 (92.50)

≥ 5 15 (9.62) 3 (7.50)

MVI 0.327 0.049*

No 97 (62.18) 24 (60.00)

Yes 59 (37.82) 16 (40.00)

Values are presented as mean ± standard deviation or n (%). 
*Indicates statistical significance (p < 0.05).
BMI – body mass index, CA153 – cancer antigen 153, CA199 – cancer antigen 199, ALT – 
alanine aminotransferase, AST – aspartate aminotransferase, AFP – alpha-fetoprotein, CEA 
– carcinoembryonic antigen, MVI – microvascular invasio
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Table 2. Univariate and multivariate analysis for predicting HCC pathological differentiation

Variable Univariate analysis p-value Multivariable analysis p-value

OR (95%) OR (95%)

Sex 0.385 (0.280-0.530) 0.001* 0.469 (0.193-1.142) 0.162

Smoke 0.405 (0.252-0.649) 0.002* 0.494 (0.162-1.502) 0.297

Drink 0.437 (0.285-0.673) 0.002* 1.739 (0.602-5.023) 0.391

Hepatitis 0.465 (0.340-0.637) 0.001* 2.213 (0.908-5.398) 0.143

Age 0.455 (0.243-0.851) 0.039* 1.031 (0.462-2.303) 0.950

Albumin 0.429 (0.243-0.756) 0.014* 0.823 (0.391-1.730) 0.666

ALT 0.450 (0.282-0.717) 0.005* 1.669 (0.702-4.112) 0.324

AST 0.373 (0.240-0.580) 0.001* 0.504 (0.215-1.183) 0.186

AFP 0.516 (0.361-0.739) 0.002* 1.405 (1.026-1.328) 0.408

CEA 0.667 (0.280-1.586) 0.442

BMI 0.963 (0.951-0.975) 0.001* 0.923 (0.875-0.973) 0.013*

Prothrombin 0.940 (0.919-0.962) 0.001* 0.982 (0.939-1.026) 0.500

MVI 0.553 (0.353-0.864) 0.029* 1.645 (0.896-3.111) 0.199

CA153 0.968 (0.952-0.984) 0.001* 1.061(1.020-1.102) 0.012*

CA199 0.993 (0.987-0.999) 0.057
*p < 0.05.
HCC – hepatocellular carcinoma, OR – odds ratio, CI – confidence interval, BMI – body mass index, CA153 – cancer antigen 153, ALT – alanine aminotransferase, AST – aspartate aminotransferase, 
AFP – alpha-fetoprotein, CEA – carcinoembryonic antigen, MVI – microvascular invasion

Figure 3. LASSO regression analysis results. A) Feature coefficient paths with optimal lambda value (λ = 0.0391). B) Mean squared error curve from 10-fold 
cross-validation. C) Coefficient values of the selected radiomic features. 
LASSO – least absolute shrinkage and selection operator, MSE – mean squared error, GLDM – grey level dependence matrix, GLCM – grey level co-occurrence matrix
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Figure 4. Comparison of model performance in predicting HCC pathological differentiation. A) ROC curves comparing 6 machine learning algorithms in the 
training cohort, showing LightGBM achieved the highest AUC (0.840). B) ROC curves of the algorithms in the testing cohort, with LightGBM maintaining 
superior performance (AUC = 0.716). C) ROC curves comparing the clinical model (AUC = 0.705), radiomics model (AUC = 0.840), and combined model 
(AUC = 0.878) in the training cohort. D) Model comparison in the testing cohort, demonstrating maintained performance of the combined model (AUC = 0.747).  
E) Heat map of DeLong test results showing significant differences between the combined model and individual models (p < 0.05)
ROC – receiver operating characteristic, AUC – area under the curve, CI – confidence interval, LightGBM – light gradient boosting machine, HCC – hepatocellular carcinoma
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and radiomics features, the LightGBM algorithm was se-
lected as the basis for the radiomics component. 

Model performance evaluation

The clinical model showed an AUC of 0.705 (95% CI: 
0.617-0.794) in the training cohort and 0.658 (95% CI: 
0.472-0.844) in the testing cohort. The radiomics model 
based on LightGBM demonstrated improved perfor-
mance with AUCs of 0.840 (95% CI: 0.775-0.905) and 
0.716 (95% CI: 0.537-0.894) in the respective cohorts.  
The combined model, integrating both clinical and ra-
diomic features, achieved the highest diagnostic perfor-
mance with AUCs of 0.878 (95% CI: 0.823-0.933) in the 
training cohort and 0.747 (95% CI: 0.582-0.918) in the 
testing cohort (Figure 4C and D). Statistical comparison 

using DeLong tests revealed significant differences between 
the combined model and both the clinical and radiomics 
models in the training cohort (p < 0.05) (Figure 4E).  
These results suggest that the combined model provides 
superior discriminative ability for predicting HCC patho-
logical differentiation compared to either the clinical or 
radiomics model alone.

Clinical utility assessment

The calibration curves demonstrated good agreement be-
tween predicted and observed probabilities for the combined 
model in both cohorts (Figure 5A). Among the 3 curves 
shown, the combined model exhibited better calibration than 
either the clinical or radiomics model alone, suggesting reli-
able prediction performance.

Figure 5. Performance evaluation and nomogram drawing of prediction models for pathological differentiation degree. A) Calibration curves comparing 
the agreement between predicted and observed probabilities in the training cohort for clinical, radiomics, and combined models. B) Decision curve analysis 
showing the net benefit of different models across various threshold probabilities. C) Nomogram integrating clinical and radiomics signatures for indivi-
dualised prediction of hepatocellular carcinoma differentiation risk
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Decision curve analysis was performed to evaluate the 
clinical utility of different prediction models (Figure 5B). 
The net benefit was calculated by subtracting the propor-
tion of false-positive results from true-positive results, 
weighted by the relative harm of unnecessary treatment 
versus missed treatment. The analysis showed that the 
combined model (green line) provided consistently higher 
net benefit compared to both the clinical model (blue line) 
and radiomics model (orange line) across a wide range of 
threshold probabilities (0.2-0.6). This indicates that the 
combined model would be more clinically useful than 
treating all patients as poorly differentiated (grey line) or 
non-poorly differentiated (black line).

To facilitate clinical application, a nomogram was con-
structed incorporating both clinical signature (Clinic_Sig) 
and radiomics signature (Rad_Sig) (Figure 5C). For indi-
vidual patients, points are assigned for each signature based 
on their values (ranging from 0.18 to 0.46 for clinical sig-
nature and 0.1 to 0.55 for radiomics signature). The total 
points (0-180) can be converted to a corresponding risk 
probability (0.25-0.75) of poor differentiation. This visual 
tool provides clinicians with an intuitive method to esti-
mate an individual patient’s risk of poor differentiation.

Discussion
This study developed and validated a novel combined 
model integrating CT radiomics features with clinical pa-
rameters for predicting HCC pathological differentiation. 
Our findings demonstrated superior predictive perfor-
mance of the combined approach compared to individual 
clinical or radiomics models. The developed nomogram 
provides an intuitive tool for clinical implementation.

Our analysis revealed significant associations be-
tween BMI, CA153, and HCC differentiation. Elevated 
BMI has been previously identified as a risk factor for ag-
gressive cancer subtypes, particularly in premenopausal 
breast cancer patients who show increased susceptibil-
ity to triple-negative and non-luminal subtypes [23,24].  
The underlying mechanism may involve specific molecu-
lar pathways and adipokine interactions that enhance 
tumour aggressiveness in individuals with higher BMI 
[25]. Similarly, CA153, traditionally employed in breast 
cancer diagnosis with 63% sensitivity and 82% specifi- 
city [26], emerged as a significant predictor in our study. 
This finding aligns with established correlations between 
poor differentiation and increased tumour aggressive- 
ness [5].

The clinical model, incorporating only BMI and 
CA153, demonstrated moderate predictive capability with 
AUCs of 0.705 (95% CI: 0.339-0.545) and 0.658 (95% CI: 
0.353-0.685) in the training and testing cohorts, respec-
tively. These results suggest potential limitations of clinical 
parameters alone in characterising HCC biological fea-
tures [27]. Further investigation of the molecular mecha-
nisms underlying these associations through in vivo and 

in vitro studies may provide additional insights into HCC 
development and progression.

Radiomics represents an emerging field in medical im-
aging analysis that extracts quantitative features through 
mathematical algorithms to enhance diagnostic accuracy. 
The integration of machine learning (ML) algorithms with 
radiomics features enables the development of predictive 
models capable of capturing tumour heterogeneity at the 
microscopic level [21,28]. In our study, we initially ex-
tracted 1834 radiomics features from CT images, encom-
passing various categories such as first-order statistics, 
shape-based features, and texture parameters. Through 
careful dimensionality reduction, 5 key features were ul-
timately selected for model construction.

To ensure robust model development, we evaluated  
6 different ML classifiers for predicting HCC pathological 
differentiation. The LightGBM algorithm emerged as the 
optimal classifier, demonstrating superior performance 
with AUCs of 0.840 (95% CI: 0.775-0.905) and 0.716  
(95% CI: 0.537-0.894) in the training and testing cohorts, 
respectively. These results present interesting contrasts 
with previous research. For instance, Chen et al. [29] re-
ported optimal performance using SVM classifiers with 
portal venous phase images, while Hu et al. [30] achieved 
better results using LR classifiers, with AUCs of 0.75 
and 0.70 for training and testing cohorts, respectively.  
The variation in classifier performance across studies can 
be attributed to several technical factors, including diffe-
rences in CT scanning parameters (such as slice thickness 
and contrast enhancement timing) and reconstruction al-
gorithms [31].

Our comprehensive analysis revealed that classifier per-
formance is inherently dependent on the specific characte-
ristics of the input data, suggesting that no single classifier 
universally outperforms others. This observation supports 
our strategy of implementing multiple classifiers for model 
development because it allows for optimal algorithm selec-
tion based on specific dataset characteristics. The successful 
integration of extensive radiomic features with multiple ML 
classifiers in our study not only improved the accuracy of 
HCC differentiation prediction but also demonstrated the 
potential of radiomics as an advanced diagnostic tool. This 
approach provides valuable insights into the development 
of more accurate and robust predictive models in radiomics 
research.

Finally, the combined clinical-radiomics model, inte-
grating BMI, CA153, and radiomic features, demonstrated 
superior predictive performance compared to individual 
models, achieving AUCs of 0.878 (95% CI: 0.823-0.933) 
and 0.747 (95% CI: 0.582-0.912) in the training and test-
ing cohorts, respectively. Different from the research of Li 
et al. [20] and Liu et al. [32], we integrate clinical and ra-
diomics, which can improve the prediction performance 
of the model, better reflect the reliability of radiomics 
technology, and at the same time promote the develop-
ment of machine learning. 
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Applications in medicine. We then drew this com-
bined model into a visual nomogram, which can more 
intuitively display the relationship between clinical fea-
tures and radiomics feature scores and HCC pathological 
differentiation. DCA of the combined model showed that 
for HCC patients with predicted pathological differentia-
tion, the combined model provided the best benefit within 
a given threshold probability range with better clinical 
benefit.  The potential to accurately predict pathological 
differentiation before surgery and improve individualised 
clinical diagnosis of HCC differentiation is of great sig-
nificance to assist clinicians in formulating more accurate 
treatment plans in a timely manner.

Our study has several limitations that should be ad-
dressed in future studies: 1) The single-centre retrospec-
tive design and small sample size may introduce selec-
tion bias. Future studies should include multicentre data 
to validate and expand the generalisability of the results. 
2) Manual delineation of original lesion boundaries may 
not completely avoid errors in poorly defined tumours.  
Advanced segmentation algorithms could improve this 
aspect in future research. 3) Our study only analysed the 
poorly differentiated group and the non-poorly differenti-
ated group, and subsequent experiments hope to find bet-
ter methods to predict the pathological differentiation of 
high, medium, and low hepatocellular carcinoma. To ad-
dress these limitations and further validate our findings, 
we are planning a prospective, multicentre study that will 
include more HCC patients, incorporate more radiomics 
features, and add an external validation model.

Conclusions
This study demonstrates that a machine learning-based 
CT radiomics model combining clinical and imaging fea-
tures can effectively predict HCC pathological differen-
tiation. The model’s non-invasive nature and promising 
predictive performance show its potential value as a pre-
operative assessment tool. The developed nomogram pro-
vides clinicians with an intuitive method for estimating 
differentiation risk, which could facilitate treatment plan-
ning and potentially improve patient outcomes.
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