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Abstract
Purpose: We aim to evaluate the reproducibility of these features and apply machine learning algorithms to predict 
cancer diagnosis.

Material and methods: We analyzed magnetic resonance (MR) images from a cohort of 82 individuals, split between  
41 prostate cancer patients and 41 healthy controls. A total of 215 radiomic features were extracted from T2-weighted 
and ADC images using the Software Environment for Radiomic Analysis (SERA). Intraclass correlation coefficient (ICC) 
analysis was used to assess the reproducibility of features, and Pearson’s correlation was applied to remove redundant 
features. After feature selection, seven dimensionality reduction techniques, including principal component analysis 
(PCA), kernel PCA, linear discriminant analysis, and locally linear embedding, were applied to preprocess the radiomic 
features. Ten machine learning algorithms, including support vector machines (SVM), random forests, neural networks, 
logistic regression, and ensemble methods such as CatBoost and AdaBoost, were utilized to classify cancerous versus 
non-cancerous tissues. Model performance was evaluated using accuracy and AUC-ROC metrics.

Results: The results showed that features with high reproducibility (ICC > 0.75) contributed significantly to the per-
formance of machine learning models. SVM, neural networks, and logistic regression achieved the highest accuracy 
(0.88-0.9) and AUC (up to 0.93) when using features from the good and excellent reproducibility categories. PCA 
emerged as the most effective dimensionality reduction method, preserving the discriminative power of reproducible 
features across all models.

Conclusion: The results indicate that radiomic feature extraction from MR images, combined with dimensionality 
reduction and machine learning algorithms, provides a robust approach for prostate cancer diagnosis.
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Introduction
Prostate cancer (PCa) stands as a leading health issue for 
men globally, ranking as the most common cancer among 
males and the second leading cause of cancer-related  
deaths [1-4]. While traditional screening methods like 

prostate-specific antigen (PSA) testing, digital rectal exa-
minations, and transrectal ultrasound-guided biopsies are 
widely used, they come with significant drawbacks, such as 
being invasive or having limited accuracy [5]. To address 
these limitations, multiparametric magnetic resonance 
imaging (mp-MRI) has emerged as a powerful diagnostic 
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tool, providing a non-invasive means to detect and evalu-
ate PCa with a high degree of accuracy [6]. However, in-
terpreting mp-MRI to determine the aggressiveness of PCa 
can be challenging and often relies heavily on the expertise 
of skilled radiologists.

Recent innovations in artificial intelligence (AI) and 
machine learning have begun transforming PCa diag-
nostics by enhancing the capabilities of mp-MRI. These 
technologies aim to reduce human error, expedite the 
diagnostic process, and improve overall accuracy by us-
ing advanced algorithms to analyze MRI images. Com-
puter-aided diagnostic (CAD) systems [7-9], particularly 
those utilizing texture analysis and convolutional neural 
networks (CNNs), have shown promise in distinguishing 
between clinically significant and insignificant PCas [10]. 
This technology not only aids radiologists in making more 
precise diagnoses but also helps in standardizing interpre-
tations, which could lead to better patient outcomes and 
more tailored treatment plans.

The growing field of radiomics – extracting vast 
amounts of quantitative data from medical images – rep-
resents a frontier in personalized medicine. By analyzing 
these data, radiomics can provide detailed insights into 
tumor characteristics that go beyond what is visible to the 
naked eye, potentially predicting disease progression and 
treatment response more accurately [11-13]. However, 
the adoption of radiomics in clinical practice faces several 
hurdles, including variations in imaging techniques and 
inconsistencies in how data are processed, which can lead 
to unreliable results [14-16]. Addressing these technical 
challenges is crucial for integrating radiomics into routine 
clinical workflows.

Ensuring the reliability of radiomics is where statistical 
tools like the intraclass correlation coefficient (ICC) come 
into play [17-19]. The ICC is used to measure the consis-
tency and agreement of radiomic features across different 
imaging datasets, accounting for variations in equipment, 
patient demographics, and imaging protocols. Its applica-
tion is essential for validating the robustness of radiomic 
features and ensuring that they can be reliably used in 
clinical setting [19-21].

This study aims to enhance the reliability and clinical 
utility of radiomics in PCa diagnosis by identifying robust 
radiomic features using the ICC. By focusing on features 
with high ICC values, we can ensure more consistent and 
accurate extraction of data from MRI images, which can 
then be applied to advanced AI classifiers. This approach 
not only promises to improve the accuracy of PCa diagno-
sis but also supports the broader goal of developing more 
personalized and effective treatment strategies for patients.

Material and methods

Research methodology steps

The methodology for developing a Prostate Tumor Clas-
sification System involves several key stages. The process 
begins with pre-processing, where prostate imaging data 
is prepared through noise reduction, intensity normaliza-
tion, and standardization of MRI image sizes to ensure 
consistency across all images. Next, feature extraction 
is performed to generate feature vectors that represent 
unique aspects of the prostate tissue. Due to the high di-
mensionality of these extracted features, dimensionality 
reduction techniques are applied to decrease computa-
tional complexity while preserving essential information.  
The reduced feature vectors are then used to train a clas-
sifier to distinguish between tumor types, with regions 
identified as tumorous or benign based on imaging data. 
Following classification, post-processing steps are imple-
mented to minimize errors and enhance accuracy. Finally, 
the system’s performance is evaluated using metrics such 
as accuracy, sensitivity, and specificity, ensuring its reliabil-
ity and effectiveness for clinical application. In Figure 1, 
the study flowchart is shown.

Study cohort and imaging techniques

This study analyzed prostate MRI images from a total of 
82 individuals, consisting of 41 patients diagnosed with 
PCa and 41 healthy controls. The images were randomly 
selected and acquired using two distinct imaging sequenc-
es: T2-weighted and apparent diffusion coefficient (ADC) 
map sequences. The T2-weighted images, known for their 
high contrast, were utilized to enhance the visualization of 
soft tissue structures, while the ADC maps were employed 
to provide insights into the diffusion characteristics of wa-
ter molecules within the tissue. All imaging was performed 

Preprocessing: Noise reduction, intensity normalization, size standardization

Imaging: T2-weighted and ADC map sequences 

Redundancy check:  
Pearson correlation ≤ 0.9 

Reliability assessment:  
ICC ≥ 0.75 

Radiomic features: 79 first-order, 136 3D features 

Classification: SVM, random forest, neural networks, etc. 

Evaluation: accuracy, AUC of ROC curve

Feature extraction: Using SERA for 215 radiomic features

Dimensionality reduction: PCA, LDA, kernel PCA, autoencoder 

Post-processing: Error minimization and accuracy enhancement 

Figure 1. Graphical abstract of the study
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using an MRI system, which is well-regarded for its high 
precision and resolution, thereby ensuring high-quality 
medical images suitable for detailed analysis. The MRI 
images used in this study were sourced from a publicly 
available dataset [https://prostate158.grand-challenge.org].

Radiomics feature extraction methodology

The radiomics feature extraction process yielded a total of 
215 features distributed across various categories, including 
first-order statistics, 3D texture features, and morphological 
characteristics, among others. Table 1 provides a detailed 
summary of the extracted radiomics features, highlight-
ing their number and functional relevance in analyzing  
MRI data. These features were generated using the Software 
Environment for Radiomic Analysis (SERA) to capture 
comprehensive intensity, shape, and texture information.

The MRI images were acquired with a 1.5 Tesla sys-
tem using the following parameters: a field of view (FOV) 
of 240 mm, a slice thickness of 3 mm, and an in-plane 
resolution of 0.5 × 0.5 mm. Pre-processing steps included 
noise reduction using Gaussian filtering, intensity nor-
malization to standardize the dynamic range across im-
ages, and resizing all images to a consistent matrix size of 
256 × 256 pixels for uniform analysis. These steps ensured 
consistency and minimized variability due to acquisition 
artifacts or patient-specific differences.

Assessment of reproducibility

The reproducibility of the RFs was assessed using the ICC 
with specific parameters, including two-way random  
effects, absolute agreement, and multiple raters or mea-
surements. The ICC is a commonly used metric for evalu-

ating the reliability and agreement between continuous 
variables in reproducibility studies, providing a ratio 
between 0 and 1. Based on the ICC value, reliability is 
classified as poor (ICC < 0.5), moderate (0.5 ≤ ICC < 
0.75), good (0.75 ≤ ICC < 0.9), or excellent (ICC ≥ 0.9). 
Features with an ICC of 0.75 or higher were deemed reli-
able and included in further analyses. The ICC was cal-
culated using custom Python code developed in-house. 
Additio nally, Pearson’s correlation coefficient was applied 
to detect redundant features, with those showing a corre-
lation coefficient greater than 0.9 considered redundant.  
Consequently, features exhibiting both high reliability 
(ICC ≥ 0.75) and low redundancy (correlation coefficient 
≤ 0.9) were averaged and selected for subsequent analysis.

Machine learning algorithms

The machine learning algorithms utilized in this study 
include support vector machine (SVM), random forest, 
neural networks, logistic regression, LightGBM, k-nearest 
neighbors (k-NN), decision trees, CatBoost, and Ada-
Boost. These models were selected to represent a broad 
range of classification techniques, encompassing both 
linear and nonlinear approaches, as well as ensemble-
based methods. SVM and logistic regression were chosen 
for their effectiveness in linear decision-making, while 
ensemble methods such as random forest, CatBoost, and 
AdaBoost were included to evaluate their ability to cap-
ture complex patterns. Neural networks were employed 
to explore the performance of deep learning approaches 
on feature-extracted data, while k-NN and decision trees 
were selected for their simplicity and interpretability. 
LightGBM, as a gradient-boosting algorithm, was chosen 
for its speed and adaptability to complex datasets.

Table 1. Overview of radiomics features extracted from magnetic resonance images

Feature category Number 
of 

features

Description

First-order features 79 Basic statistical features derived from the intensity values of the MRI images.

3D features 136 Features extracted in three dimensions from the MRI images.

Morphology features (Morph) 29 Features describing the shape and structure of the regions of interest.

Local intensity features (LOC) 2 Features capturing local intensity variations.

Statistical features (STAT) 18 Statistical measures computed from the image data.

Intensity histogram features (IH) 24 Features derived from the intensity histogram of the image.

Intensity volume histogram features (IVH) 7 Features based on the intensity volume histogram.

Co-occurrence matrix features (CM) 50 Features extracted from the co-occurrence matrix (3D, averaged, and merged).

Run length matrix features (RLM) 32 Features derived from the run length matrix (3D, averaged, and merged).

Size zone matrix features (SZM) 16 Features based on the size zone matrix (3D).

Distance zone matrix features (DZM) 16 Features derived from the distance zone matrix (3D).

Neighborhood grey tone difference matrix features (NGT) 5 Features capturing local texture variations using the NGT matrix (3D).

Neighboring grey level dependence matrix features (NGL) 16 Features based on the neighboring grey level dependence matrix (3D).
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For dimensionality reduction, the study employed au-
toencoder, isomap, kernel principal component analysis 
(kernel PCA), laplacian eigenmaps, linear discriminant 
analysis (LDA), locally linear embedding (LLE), and prin-
cipal component analysis (PCA). These techniques were 
selected to explore both linear and nonlinear transforma-
tions of the data. Linear methods, such as PCA and LDA, 
were used for their ability to preserve global variance 
and maximize class separability, respectively. Nonlinear 
methods, including kernel PCA, isomap, laplacian eigen-
maps, and LLE, were included to assess their capability 
in capturing complex, manifold-based structures in high- 
dimensional data. Autoencoder, as a neural network-based 
approach, was employed to learn compact and represen-
tative feature spaces. This combination of models and 
dimensionality reduction techniques provides a compre-
hensive framework for evaluating the interplay between 
algorithms and feature transformations.

Each machine learning algorithm was fine-tuned us-
ing the following hyperparameters: SVM with a radial ba-
sis function kernel (C = 1, gamma = 0.1), random forest 
with 100 estimators and a maximum depth of 10, neural 
networks with two hidden layers (64 and 32 neurons, re-
spectively) and a learning rate of 0.001, logistic regres-
sion with L2 regularization (C = 1), and LightGBM with 
200 estimators and a learning rate of 0.05. The CatBoost 
and AdaBoost ensemble methods were configured with 
default parameters, with 200 estimators each. For valida-
tion, we employed 10-fold cross-validation to ensure the 
robustness of the models. This approach splits the dataset 
into ten parts, using nine for training and one for test-
ing, iteratively rotating the test set. Model performance 
was averaged across folds to mitigate biases due to data 
partitioning.

Evaluation of models applied

To assess the performance of the classification models 
applied to prostate data, accuracy and the area under the 
curve (AUC) of the receiver operating characteristic (ROC) 
curve were used as primary evaluation metrics. Accuracy 
measures the proportion of correctly classified instances, 
providing an overall indication of model performance. 
AUC, on the other hand, evaluates the discriminatory 
ability of the models by quantifying the trade-off between 
the true positive rate (sensitivity) and the false positive 
rate across different classification thresholds. A higher 
AUC value indicates better performance in distinguish-
ing between positive and negative classes. These metrics 
were selected to offer both a straightforward evaluation 
of overall correctness (accuracy) and a more detailed un-
derstanding of the models’ ability to differentiate between 
classes (AUC). This dual approach ensures a robust evalu-
ation of model effectiveness across various dimensionality 
reduction techniques and classification algorithms. The for-  
mula for accuracy is:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

where TP, TN, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively.

Results
This study focused on the automatic diagnosis and classi-
fication of PCa using tissue characteristics extracted from 
MRI images, leveraging machine learning algorithms and 
feature reduction techniques. A cohort of 82 patients was 
analyzed, divided into two groups: those with prostate tu-
mors (Class I) and those without (Class II). MRI scans, 
specifically T2-weighted images (T2W) and ADC maps, 
were used to extract quantitative features. The ViSERA 
software facilitated the extraction of 215 quantitative 
radiomic features from each image sequence. These fea-
tures were processed to differentiate between healthy and 
cancerous tissues using machine learning algorithms. To 
ensure the reliability of the extracted features, ICCs were 
computed to evaluate their reproducibility across different 
MRI sequences. Features were classified based on their 
ICC values into four categories: poor, moderate, good, and 
excellent. Features with ICC values greater than 0.75 were 
deemed good or excellent and were used in subsequent 
analyses.

Reproducibility of T2W and ADC map features

The extracted features were grouped into 11 categories: 
NGL, NGT, DZM, SZM, RLM, CM, IVH, IH, STAT, LOC, 
and MORPH. As shown in Figure 2, the distribution of 
selected features across these groups varied between the 
T2W and ADC map sequences. For the T2W sequence, 
the number of selected features in each group was 17, 0, 8, 
10, 6, 35, 16, 7, 8, 3, and 7, respectively. In comparison, for 
the ADC map sequence, the numbers were 15, 0, 5, 8, 3, 
25, 8, 6, 6, 2, and 3, respectively. Figures 3 and 4 illustrate 
the reproducibility of these features, with the horizontal 
axis representing the radiomic groups and the vertical axis 
showing the ICC values and their respective quartiles.

Selection of features based on ICC values for T2W 
sequences and ADC maps

Based on ICC values, four categories of feature repro-
ducibility were established: poor, moderate, good, and 
excellent. Out of the 215 extracted features for both T2W 
sequences and ADC maps, those categorized as good and 
excellent were selected for further analysis. As depicted 
in Figures 4 and 5, for T2W sequences, 66, 34, 63, and  
52 features were identified in the categories of poor, 
moderate, good, and excellent, respectively. Features in  
the good and excellent categories (groups 63 and 52) 
were prioritized for the next phase of analysis (Figure 4). 
Similarly, for ADC maps, 67, 67, 55, and 26 features were 
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Figure 2. Reproducibility of features in T2W-weighted images Figure 3. Reproducibility of features in ADC maps
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Figure 4. Classification of reliability based on ICC values across four catego-
ries: poor, moderate, good, and excellent for the T2W sequence

Figure 5. Classification of reliability based on ICC values across four catego-
ries: poor, moderate, good, and excellent for the ADC sequence

identified in the respective categories, with groups 55 and  
26 being optimal for subsequent analysis (Figure 5). In 
these figures, the horizontal axis represents the four repro-
ducibility categories, while the vertical axis corresponds to 
the number of features.

Combining selected radiomic features and machine 
learning classification

The analysis of accuracy values highlights the robust-
ness of certain algorithms across various dimensional-
ity reduction techniques. SVM, Neural Networks, and 
Logistic Regression consistently achieve high accuracy 
(0.88-0.9), demonstrating their adaptability and reliabil-
ity regardless of feature transformation (Figure 6). PCA 
emerges as the most effective dimensionality reduction 
technique, providing high accuracy across all algorithms, 
while Kernel PCA and Laplacian Eigenmaps also perform 
well in maintaining accuracy. In contrast, methods like 
Isomap and LLE introduce significant variability, partic-
ularly for algorithms such as LightGBM and AdaBoost, 
which exhibit lower accuracy (as low as 0.64 and 0.76,  
respectively). k-NN shows unusual behavior with ex-
tremely low accuracy (0.10) for Autoencoder, suggesting 

sensitivity to specific feature transformations. Overall, the 
results underscore the importance of aligning algorithm 
selection with dimensionality reduction methods to opti-
mize accuracy.

The AUC analysis further reveals important patterns 
regarding the algorithms’ performance in distinguishing 
between classes (Figure 7). SVM demonstrates exception-
al consistency with AUC values of 0.91 across most meth-
ods, while Logistic Regression and CatBoost also deliver 
strong performance (up to 0.91 and 0.93, respectively). 
Neural Networks achieve the highest AUC (0.93) with 
PCA and Kernel PCA but show significant drops (e.g., 
LLE: 0.5), indicating potential instability under certain 
transformations. k-NN and decision trees exhibit compa-
rable AUC performance (up to 0.93 and 0.91, respectively) 
but show variability with LLE and isomap, likely due to 
challenges in adapting to transformed feature spaces. 
LightGBM performs poorly in AUC for several methods 
(as low as 0.50), suggesting sensitivity to the quality of fea-
ture representation. These findings reinforce PCA as a reli-
able preprocessing technique for maintaining strong AUC, 
while highlighting the need for caution with methods 
like isomap and LLE, which may compromise the dis-
criminatory power of certain algorithms.
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Figure 6. Comparison of accuracy across machine learning algorithms and dimensionality reduction techniques

Figure 7. AUC performance of algorithms with various feature transformation methods
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Discussion
PCa is the most common cancer among men and the sec-
ond leading cause of cancer-related deaths. Traditional 
diagnostic methods like PSA testing and biopsies have 
limitations in accuracy and invasiveness. mp-MRI of-
fers a non-invasive alternative with high accuracy, but its 
interpretation requires significant expertise. To improve 
diagnostic precision, this study explores the use of AI and 
machine learning techniques, such as CNNs and texture 
analysis, to enhance mp-MRI capabilities. The method-
ology includes preprocessing MRI images, extracting ra-
diomic features, and applying dimensionality reduction 
techniques like PCA to manage data complexity. Machine 
learning algorithms, including SVM and random forest 
etc., are used to classify tumor types. To ensure the reli-
ability of radiomic features, the study employs the ICC 
to select robust features. This approach aims to improve 
the accuracy and consistency of PCa diagnostics, enabling 
more personalized treatment strategies.

Our study and the work by Li et al. [22] both empha-
size the potential of radiomics in improving PCa diag-
nosis. While our study focuses on a balanced cohort of  
82 individuals with 215 radiomic features extracted from 
T2-weighted and ADC map sequences, Li et al. [22] ana-
lyzed a larger cohort of 381 patients and used biparametric 
MRI. Both studies employed machine learning for predic-
tion, but we utilized a broader range of algorithms and di-
mensionality reduction techniques. In contrast, Li et al. [22] 
focused on logistic regression models and combined clini-
cal data with radiomics for better prediction accuracy. Both 
works highlight the diagnostic value of radiomics, but our 
study further explores feature reproducibility and dimen-
sionality reduction methods. Zhang et al. [23] developed 
and validated a multiparametric MRI-based radiomics sig-
nature to distinguish between indolent and aggressive PCa, 
extracting 1576 features from T2WI and diffusion-weight-
ed imaging. In comparison, our study focused on a smaller 
dataset of 82 individuals and extracted 215 features from 
T2-weighted and ADC map sequences. Both studies uti-
lized machine learning techniques; however, Zhang et al. 
[23] employed Select K Best and LASSO regression to build 
their predictive model, while we implemented a broader 
set of algorithms and dimensionality reduction methods. 
While Zhang et al. [23] concentrated on classifying PCa 
aggressiveness, our study aimed at overall diagnostic clas-
sification, with a greater focus on feature reproducibility.

Rodrigues et al. [24] explored the development of 
robust classifiers for predicting PCa aggressiveness by 
combining handcrafted and deep radiomic features. They 
tested several training strategies, including removing un-
stable features based on ICC, averaging features between 
radiologists, and using heterogeneous datasets from  
radiologist-segmented masks. In contrast, our study 
focused on feature reproducibility and dimensional-
ity reduction in a balanced dataset of 82 patients. While 

Rodrigues et al. [24] integrated deep learning features 
alongside handcrafted ones, we exclusively used radiomic 
features extracted from MRI sequences. Both studies 
highlight the challenges of overfitting and variability, 
but our approach emphasizes radiomic feature stability, 
whereas Rodrigues et al. [24] found that heterogeneous 
data training improved classifier robustness. 

Khanfari et al. [25] introduced a novel multi-flavored 
feature extraction approach, combining radiomics and 
deep features from four mpMRI images using eight fusion 
techniques, creating 52 datasets per patient. In contrast, 
our study focused on a smaller dataset of 82 individuals, 
with radiomic features extracted from T2-weighted and 
ADC sequences. While Khanfari et al. [25] leveraged 
a wide range of fusion techniques and feature sets, in-
cluding deep learning, to grade PCa, our study empha-
sized feature reproducibility and dimensionality reduction 
in diagnostic classification. Both studies highlight the 
strength of integrating multiple feature extraction tech-
niques, but Khanfari et al. [25]. observed stronger per-
formance from deep features, while our study remained 
focused on handcrafted radiomic features.

Limitations, challenges, and areas for further 
investigation in future research

While our study successfully demonstrated the potential 
of radiomic features and machine learning algorithms for 
the classification and diagnosis of PCa, several limita-
tions should be acknowledged. First, the relatively small 
sample size of 82 patients may limit the generalizability of 
the results to larger and more diverse populations. Addi-
tionally, our analysis was confined to two MRI sequences 
(T2-weighted and ADC maps), and incorporating addi-
tional imaging modalities such as DWI or contrast-en-
hanced MRI could further enhance diagnostic accuracy. 
Another limitation is the exclusion of clinical data such as 
patient age, PSA levels, or prostate volume, which could 
provide valuable complementary information when com-
bined with radiomic features. Future work should focus 
on expanding the dataset, integrating multi-modal im-
aging, and incorporating clinical data to improve model 
robustness. Additionally, exploring more advanced deep 
learning methods alongside traditional radiomic features 
could provide further insights into cancer classification 
and prognosis. Finally, longitudinal studies could assess 
the effectiveness of these models in monitoring disease 
progression and treatment response over time.

Conclusions
Our study demonstrates the significant potential of radiomic 
features extracted from prostate MRI scans combined with 
machine learning algorithms in enhancing the non-invasive 
diagnosis of PCa. By focusing on feature reproducibility 
and employing a diverse range of machine learning models 
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and dimensionality reduction techniques, we have provided 
a robust framework for distinguishing between healthy and 
cancerous tissues. While challenges such as small sample size 
and limited imaging modalities remain, the results under-
score the promise of radiomics as a valuable tool in precision 
medicine. The ability to leverage quantitative imaging bio-
markers offers a pathway toward more accurate, personalized 
treatment strategies for PCa patients. As advancements in 
AI and imaging technologies continue, integrating radiomic 
features with clinical data and deep learning models holds 
great promise for future improvements in cancer diagnosis, 
prognosis, and treatment planning.
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