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Abstract
Purpose: Differentiating active from non-active multiple sclerosis (MS) lesions is critical for disease management but 
often relies on gadolinium-enhanced magnetic resonance imaging (MRI), raising concerns about retention risks and 
costs. This study introduces a contrast-free, multi-sequence MRI approach using radiomics and machine learning to 
classify MS lesion activity.
Material and methods: A total of 187 lesions from 31 MS patients (mean age 42.5 ± 11.3 years; 64.5% female) at Amin 
Hospital (November 2024 – February 2025) were retrospectively analysed using a 1.5 T MRI scanner. Five sequences 
– T1-weighted (T1W), T2-weighted (T2W), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging 
(DWI), and susceptibility-weighted imaging (SWI) – were processed to extract 8905 radiomic features, refined to 127 via 
correlation and recursive feature elimination. XGBoost classified lesions as active or non-active, validated on an internal 
test set (n = 28 lesions), with performance assessed by area under the receiver operating characteristic curve (AUC-ROC).
Results: The XGBoost model achieved an AUC-ROC of 0.87 (95% CI: 0.82-0.92), sensitivity of 0.85, and specificity 
of 0.83, outperforming other classifiers (SVM AUC 0.84). FLAIR (35.4%) and T2W (28.3%) dominated feature con-
tributions, with SWI (12.6%) enhancing accuracy (AUC dropped to 0.84 without SWI). Noise simulation (Gaussian  
σ = 0.1) confirmed robustness (AUC = 0.86).
Conclusions: This integration of SWI with conventional sequences in a unified radiomic model offers a promising con-
trast-free alternative for MS lesion classification, achieving promising accuracy comparable to radiologist performance 
on an internal test set (n = 28 lesions), pending external validation. External validation is needed to confirm the genera-
lisability, but this approach could reduce gadolinium reliance in clinical practice.
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Introduction
Multiple sclerosis (MS) is a complex neurological disorder 
characterised by the formation of demyelinating plaques 
in the central nervous system [1,2]. The ability to differ-

entiate between active and non-active MS lesions is crucial 
for proper disease monitoring, treatment planning, and 
prognosis assessment [3]. Traditional magnetic resonance 
imaging (MRI) sequences, while valuable for MS diagno-
sis, often present challenges in accurately distinguishing le-
sion activity status based on visual interpretation alone [4]. 



ML-based MS lesion activity classification using multi-sequence MRI radiomics

e395© Pol J Radiol 2025; 90: e394-e403

Recent advances in computational imaging analysis, 
particularly in the field of radiomics, have opened new 
ave nues for extracting quantitative imaging features (e.g. 
intensity, texture, shape) that numerically describe lesion 
properties beyond visual assessment [5]. Radiomics en-
ables high-throughput extraction of quantitative imag-
ing features (e.g. intensity, texture, shape), which, when 
combined with machine learning algorithms like support 
vector machines and random forests, can capture subtle 
patterns beyond visual assessment, improving diagnos-
tic accuracy in MS and other conditions [6,7]. These 
radiomic features provide a rich dataset for machine 
learning algorithms to analyse complex imaging pat-
terns [8]. Recent studies have demonstrated the success 
of various machine learning algorithms, including sup-
port vector machines (SVM), random forests, and deep 
neural networks, in analysing these radiomic features 
for MS lesion detection and classification [9-12]. These 
computational approaches have shown particular pro-
mise in capturing subtle imaging patterns that may elude 
conventional radiological assessment. Combined with so-
phisticated machine learning algorithms, these radiomic 
features have demonstrated promising potential in im-
proving diagnostic accuracy and disease characterisation 
across various medical conditions [3]. This study presents 
a novel approach integrating radiomic feature extraction 
from a comprehensive set of MRI sequences, including  
T1-weighted imaging (T1W; with and without gadolinium 
contrast), T2-weighted imaging (T2W), fluid-attenuated 
inversion recovery (FLAIR), diffusion-weighted imaging 
(DWI), and susceptibility-weighted imaging (SWI). To our 
knowledge, no prior study has integrated SWI into a ra-
diomic model for MS lesion activity classification, mak-
ing this a novel approach to contrast-free lesion analy sis. 
Second, it builds on prior multi-sequence approaches by 
combining radiomic features extracted from all available 
sequences (T1W, T2W, FLAIR, DWI, and SWI) in a uni-
fied model, leveraging their complementary information 
to enhance classification accuracy. Previous studies have 
typically relied on individual sequences or limited combi-

nations, whereas this integrated multi-sequence approach 
leverages the complementary information from each im-
aging modality to enhance classification accuracy [4,5,13]. 
By using this complete multimodal imaging protocol with 
advanced machine learning techniques, we aim to develop 
a robust predictive model for MS plaque classification. 

Material and methods

Data collection

This retrospective study was reviewed and approved by 
the Ethics Committee of Isfahan University of Medical 
Sciences under approval number IR.MUI.MED.REC. 
1403.050. The research was conducted in accordance with 
the principles of the Declaration of Helsinki. The require-
ment for individual informed consent was waived by  
the Ethics Committee due to the retrospective nature of 
the study and the use of de-identified imaging data col-
lected as part of routine clinical care between November 
2023 and February 2024.

The imaging dataset consisted of comprehensive multi- 
sequence MRI scans performed on a 1.5 Tesla MRI scan-
ner [Philips, Ingenia 1.5 T MRI system, Netherlands].  
The protocol included T1W imaging acquired both pre- 
and post-gadolinium contrast administration, T2W, 
FLAIR, DWI, and SWI sequences. This extensive array of 
sequences provided detailed information for neurologi-
cal assessment. It included T1W (pre- and post-contrast), 
T2W, FLAIR, DWI, and SWI sequences [14]. While the 
model aims to classify lesions without contrast, labels 
were based on contrast-enhanced T1W imaging as the 
gold standard. From an initial cohort of 57 patients with 
MS, 31 patients were ultimately included in the study 
based on predetermined inclusion and exclusion crite-
ria. Inclusion criteria comprised the following: (1) con-
firmed diagnosis of MS according to the 2017 McDon-
ald criteria, (2) availability of complete multi-sequence 
MRI protocol including T1W (pre- and post-contrast), 
T2W, FLAIR, DWI, and SWI sequences, (3) age range  
between 18 and 65 years, and (4) documented clinical  
follow-up of at least 6 months. Patients were excluded if they 
had any of the following: (1) incomplete or poor-quality 
MRI sequences (n = 8), (2) previous brain surgery or other 
concurrent neurological conditions (n = 5), (3) contrain-
dications to gadolinium contrast administration (n = 4), 
(4) substantial motion artifacts affecting image quality  
(n = 6), or (5) insufficient clinical documentation or loss 
to follow-up (n = 3). This rigorous selection process en-
sured a homogeneous study population with high-quality 
imaging data suitable for radiomic analysis (Figure 1). In 
total, 187 MS lesions were identified and annotated by an 
experienced neuroradiologist with 21 years of experience 
who was blinded to clinical information. Lesions were 
classified as active or non-active based on gadolinium en-
hancement on T1-weighted post-contrast images and/or 

Figure 1. Patient selection flowchart for multiple sclerosis (MS) lesion ana-
lysis study

Excluded (n = 26)
• Incomplete/poor MRI (n = 8)
• Brain surgery/neurological issues (n = 5)
• Gadolinium contraindications (n = 4)
• Motion artifacts (n = 6) 
• Incomplete documentation (n = 3) 

Initial MS patients assessed 
(n = 57)

Lesions identified and labeled 
(n = 187 lesions)
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(n = 28 lesions) 
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the presence of new or enlarging lesions on T2/FLAIR 
compared to previous examinations. 

Data preprocessing

All images underwent a standardised preprocessing pipe-
line using the following steps: motion correction with FSL 
(v6.0), N4 bias field correction via ITK (v5.3, convergence 
threshold 0.001, spline distance 150 mm) to mitigate field 
inhomogeneities, and intensity normalisation using Nyul’s 
method in Python (v3.9) [15,16]. Images were then re-
sampled to isotropic 1 mm³ voxels using spline interpolation 
in 3D Slicer (v5.6.2) to standardise dimensions across se-
quences, improving feature extraction consistency [17-19]. 
The extraction process involved standardised prepro-
cessing steps to ensure robust and consistent feature 
extraction. These steps included voxel intensity discreti-
sation using a fixed bin width of 25, followed by z-score 
standardisation to normalise the data distribution [20]. 
Advanced filtering techniques were applied, includ-
ing Laplacian of Gaussian (LoG) filtering and wave-
let decomposition. The LoG filtering was performed 
with a range of sigma values from 0.5 to 5, incremented  
in steps of 0.5. Wavelet decomposition was conducted 
using an 8-level decomposition scheme, enabling the 
extraction of features across multiple spatial resolutions 
and frequency bands. LoG and wavelet techniques were 
chosen to capture multi-scale texture patterns, enhancing 
the detection of subtle lesion characteristics. To ensure re-
producibility, specific parameters included the following: 
N4 bias correction with a convergence threshold of 0.001 
and spline distance of 150 mm; LoG filtering with sigma  
values of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0; 
and XGBoost hyperparameters optimised via grid search 
(learning rate: 0.01-0.3, max depth: 3-10, n_estimators: 
100-500). DWI images were corrected for eddy currents 
using FSL’s eddy tool, enhancing diffusion signal accuracy. 
SWI phase images were filtered with Philips’ proprietary  

algorithm to enhance microbleed and venous contrast, 
complementing lesion characterisation. Full details are 
provided in Supplementary Table S1 (after references),  
adhering to the CLAIM checklist for AI in medical imag-
ing. Quality control checks were performed at each pre-
processing step to verify the accuracy and consistency of 
the results.

Feature extraction

Lesion segmentation and radiomic feature extraction were 
performed using 3D Slicer (version 5.6.2), an open-source 
software platform for medical image computing, with the 
PyRadiomics extension utilised for comprehensive quan-
titative feature extraction. Following manual lesion seg-
mentation by an experienced neuroradiologist, a total of 
1781 radiomic features per sequence were extracted from 
each 3-dimensional volume of interest (VOI), encompass-
ing first-order statistics (n = 18), shape-based features  
(n = 14), and texture features derived from grey level co-
occurrence matrix (GLCM), grey level run length matrix 
(GLRLM), grey level size zone matrix (GLSZM), and grey 
level dependence matrix (GLDM) (Table 1 and 2). A total 
of 8905 features were extracted from T1W (pre-contrast), 
T2W, FLAIR, DWI, and SWI sequences, with contrast-
enhanced T1W used only for labelling (more detail in 
Table 3).

Feature selection

Before feature selection, standardisation of radiomic fea-
tures was essential due to their varying dimensions and 
scales. Z-score standardisation was applied to transform 
all features to a common scale using the formula:

z = (x – μ)/σ,
where z is the standardised value, x is the original 

feature value, μ is the mean of the feature, and σ is the 
standard deviation of the feature. This standardisation 

Table 1. Magnetic resonance imaging acquisition parameters

Parameter T1W T2W FLAIR DWI SWI

TR (ms) 7.8 4800 4800 8000 27

TE (ms) 3.5 120 354 89 20

Field of view (mm) 256 × 256 256 × 256 256 × 256 240 × 240 240 × 240

Slice thickness (mm) 3.5 3.5 3.5 3.5 3.5

Gap (mm) 0.5 0.5 0.5 0.5 0.5

Voxel size (mm³) 1 × 1 × 3.5 1 × 1 × 3.5 1 × 1 × 3.5 1 × 1 × 3.5 1 × 1 × 3.5

Flip angle (°) 90 90 90 90 15

Matrix size 256 × 256 256 × 256 256 × 256 240 × 240 240 × 240

Inversion time (ms) – – 900 – –

b-value (s/mm²) – – – 1000 –
T1W – T1-weighted imaging, T2W – T2-weighted imaging, FLAIR – fluid-attenuated inversion recovery, DWI – diffusion-weighted imaging, SWI – susceptibility-weighted 
imaging, TR – repetition time, TE – echo time
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Table 2. Extracted radiomic features categories 

Feature category Description Number of features

First-order statistics Mean, median, standard deviation, skewness, kurtosis, energy, entropy, uniformity 18

Shape-based features Volume, surface area, sphericity, maximum diameter, compactness 14

GLCM features Gray level co-occurrence matrix based texture features 24

GLRLM features Gray level run length matrix based texture features 16

GLSZM features Gray level size zone matrix based texture features 16

GLDM features Gray level dependence matrix based texture features 14

Wavelet features Features extracted from wavelet transformed images 749

Total features per sequence Sum of all features for each MRI sequence 1781

Total features Features across 5 MRI sequences 8905
GLCM – grey level co-occurrence matrix, GLRLM – grey level run length matrix, GLSZM – grey level size zone matrix, GLDM – grey level dependence matrix, MRI – magnetic resonance imaging

ensures that all features contribute equally to the subse-
quent analysis, preventing features with larger numerical 
ranges from dominating the selection process. Follow-
ing standardisation, a 2-stage feature selection approach 
was implemented. First, features with high collinearity 
were eliminated using the Pearson correlation coefficient 
(threshold > 0.80) to reduce redundancy in the feature 
space. A Pearson correlation threshold of 0.80 was used 
because it is a common cutoff to reduce collinearity [21]. 
The second stage employed recursive feature elimina-
tion with cross-validation (RFECV), iteratively removing 
the least important features based on XGBoost’s feature 
importance scores. Using 5-fold cross-validation with  
AUC-ROC as the metric, RFECV identified an optimal 
subset of 127 features. RFECV was performed within 
the cross-validation loop on the training set to prevent 
data leakage. To further mitigate overfitting risks given 
the feature-to-sample ratio (127 : 187), an exploratory 
L1 regularisation (Lasso) analysis reduced features to  
52, yielding a comparable AUC-ROC of 0.86 (95% CI: 
0.81-0.91), reported in Supplementary Table S2.

Data splitting and model selection

The dataset comprising 187 lesions was strategically 
partitioned using a stratified random sampling approach 
to maintain class distribution across sets; specifically, 
74.8% of the data (n = 140) were allocated to the training 
set, while 10.2% (n = 19) were designated for the valida-
tion set, and 15% (n = 28) were reserved for an internal 
test set, preserving class balance (39% active, 61% non-
active). The test set was strictly untouched until final 
evaluation, to ensure reproducibility. Because the model 
was evaluated on an internal dataset, external valida-
tion is needed to confirm generalisability. The optimal 
feature subset was determined based on validation set 
performance. Multiple machine learning algorithms were 
evaluated, including SVM, K-nearest neighbours (KNN), 

logistic regression, random forest, XGBoost, and decision 
tree. Hyperpara meter opti misation was performed using 
grid search with 5-fold cross-validation on the training 
set. XGBoost was selected over deep learning approaches 
due to the modest dataset size (n = 187 lesions). Model 
training and evaluation were performed in Python (v3.9) 
using scikit-learn (v1.2.2) and XGBoost (v1.7.3). Plots 
were generated with Matplotlib (v3.7.1). Model selection 
was based on the area under the receiver operating cha-
racteristic curve (AUC-ROC) on the validation set, with 
additional consideration given to sensitivity, specificity, 
and model interpretability.

Results

Patients’ characteristics

The study cohort consisted of 31 patients with MS, exhi-
biting a range of demographic and clinical characteris-
tics, including varied disease durations and MS subtypes.  
A total of 187 lesions were analysed, distributed across 
training, validation, and test sets, with active and non- 
active lesions identified based on conventional radiological 
criteria. Detailed patient demographics, clinical cha-
racteri stics, and dataset distribution are summarised in 
Tables 3, 4 and Figure 2.

Feature selection 

Initial feature extraction yielded 8905 radiomic fea-
tures across all 5 MRI sequences (1781 features per se-
quence). The correlation coefficient eliminated 2847 
features with high collinearity (Pearson correlation coef-
ficient > 0.80), leaving 1408 features for further analysis. 
Subsequently, recursive feature elimination with cross-
validation (RFECV) was employed to identify the most 
discriminative features, resulting in an optimal subset of 
127 features. The RFECV process utilised a 5-fold cross- 
validation strategy with the AUC-ROC as the performance 
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on the independent test set with an AUC-ROC of 0.87 
(95% CI: 0.82-0.92). The final model achieved a sensiti vity 
of 0.85 (95% CI: 0.79-0.91), specificity of 0.83 (95% CI: 
0.77-0.89), and accuracy of 0.84 (95% CI: 0.78-0.90) on 
the test set. Feature importance analysis showed that 
FLAIR-derived texture features, particularly those captur-
ing heterogeneity patterns through GLCM and GLRLM 
matrices, were the strongest predictors of lesion activity 
status. The model demonstrated consistent performance 
across different MS subtypes, with slightly higher accu-
racy in relapsing remitting MS (RRMS) patients (0.86, 
95% CI: 0.80-0.92) compared to progressive forms (0.82, 
95% CI: 0.75-0.89). A c2 test confirmed no significant dif-
ference in performance between RRMS and progressive 
forms (p = 0.42). Notably, the model’s performance was 
not significantly affected by lesion size (ANOVA, p = 0.34) 
or location (ANOVA, p = 0.28). Cross-validation analysis 
showed stable performance metrics across different data 
splits, with a mean AUC-ROC of 0.88 ± 0.03, indicating 
robust generalisability of the model (Figures 3 and 4).

Discussion
The accurate and timely assessment of MS lesion activity 
remains a critical component in disease management 
and treatment planning. While gadolinium-enhanced  
T1-weighted imaging has long served as the gold stan-
dard for detecting active MS lesions, this approach pres-
ents several notable limitations. The reliance on contrast- 
enhanced imaging introduces concerns regarding gado-
linium retention, potential adverse reactions, increased 
examination costs, and extended scanning times. The inte - 
gration of artificial intelligence (AI) in clinical decision-
making for MS has gained significant momentum in re-
cent years, with numerous studies investigating its poten-
tial applications. A comprehensive review by Bonacchi  
et al. [22] demonstrated that AI-driven approaches could 
potentially streamline MRI protocols while maintaining 
diagnostic accuracy, thereby enabling the implementation 
of more sophisticated analytical techniques. Furthermore, 
a 2023 systematic review by Spagnolo et al. [23] provided 
compelling evidence regarding the economic benefits and 
clinical value proposition of AI-based tools in MS detec-
tion and monitoring. In the context of lesion activity 

Table 3. Patient demographics and clinical characteristics

Characteristic Value

Number of patients 31

Age distribution (years) 42.5 ± 11.3 (21-65)

Gender distribution, n (%) Male: 11 (35.5)
Female: 20 (64.5)

Disease duration (years) 8.3 ± 5.7 (1-20)

Clinical MS subtype 
distribution, n (%)

RRMS: 22 (71.0)
SPMS: 5 (16.1)
PPMS: 3 (9.7)
PRMS: 1 (3.2)

Total number of MS lesions 187

Number of lesions per patient 6.0 ± 3.2 (2-15)

Distribution of lesions, n(%) Active: 73 (39.0)
Non-active: 114 (61.0)

Dataset distribution Training set: 140 lesions (74.8%)
Validation set: 19 lesions (10.2%)

Test set: 28 lesions (15.0%)

MRI characteristics 1.5 T MRI scanner
MS – multiple sclerosis, RRMS – relapsing-remitting multiple sclerosis, SPMS – Secondary pro-
gressive multiple sclerosis, PPMS – Primary progressive multiple sclerosis, PRMS – progressive 
relapsing multiple sclerosis, MRI – magnetic resonance imaging

Table 4. Performance metrics of different machine learning models

Classifier AUC-ROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1-score

XGBoost 0.87 (0.82-0.92) 0.85 (0.79-0.91) 0.83 (0.77-0.89) 0.84 (0.78-0.90) 0.84

Support vector machines 0.84 (0.78-0.90) 0.82 (0.76-0.88) 0.81 (0.75-0.87) 0.81 (0.75-0.87) 0.81

Random forest 0.83 (0.77-0.89) 0.80 (0.74-0.86) 0.82 (0.76-0.88) 0.81 (0.75-0.87) 0.81

Logistic regression 0.79 (0.73-0.85) 0.77 (0.71-0.83) 0.78 (0.72-0.84) 0.77 (0.71-0.83) 0.77

K-nearest neighbours 0.76 (0.70-0.82) 0.75 (0.69-0.81) 0.74 (0.68-0.80) 0.74 (0.68-0.80) 0.74

Decision tree 0.75 (0.69-0.81) 0.73 (0.67-0.79) 0.74 (0.68-0.80) 0.73 (0.67-0.79) 0.73

metric. These features were distributed across sequences 
as follows: FLAIR contributed the largest portion at 35.4% 
(approximately 45 features), followed by T2-weighted  
at 28.3% (approximately 36 features), DWI at 16.5%  
(approximately 21 features), SWI at 12.6% (approximately 
16 features), and T1-weighted at 7.2% (approximately  
9 features). The selected features were predominantly tex-
ture features from GLCM and GLRLM (45.7%), wavelet-
based features (28.3%), and first-order statistics (17.3%). 
Feature importance values may vary across data splits, with 
cross-validation showing a standard deviation of ±2.5% for 
FLAIR contributions.

Model construction and performance evaluation

Among the evaluated machine learning algorithms,  
XGBoost demonstrated superior performance on the 
validation set, achieving an AUC-ROC of 0.89 (95% CI: 
0.84-0.94). The model maintained robust performance 
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Figure 2. Performance metrics of machine learning classifiers across MRI sequences for MS lesion classification 
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classification, Khajetash et al. [24] conducted a notable 
investigation employing T2-FLAIR sequences exclusive-
ly, evaluating 6 distinct classification algorithms. While 
their model demonstrated promising results, the single- 
sequence approach inherently limits the model’s robust-
ness and generalisability. This limitation underscores the 
importance of incorporating multiple MRI sequences 
to capture the complex pathophysiological characteris-
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Figure 2. Cont. Performance metrics of machine learning classifiers across MRI sequences for MS lesion classification 
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tics of MS lesions comprehensively. A key novelty of this 
study lies in the integration of SWI with conventional 
MRI sequences, an approach not previously explored 
for MS lesion classification. Feature importance analysis 
revealed that SWI-derived texture features, particularly 
from GLRLM (12.6% of selected features), capture subtle 
microvascular changes and hemosiderin deposits asso-
ciated with lesion activity, complementing the white mat-
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Figure 3. ROC curve comparison of the machine learning classifiers Figure 4. Distribution of selected features across MRI sequences and feature types
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ter pathology emphasised by FLAIR (35.4%) and T2W 
(28.3%). An ablation study removing SWI reduced the 
XGBoost model’s AUC-ROC from 0.87 to 0.84 (95% CI: 
0.79-0.89), underscoring its additive value in enhancing 
classification accuracy. This multi-sequence synergy ad-
dresses a gap in prior studies, which often relied on fewer 
sequences and missed these pathophysiological nuances. 
We opted for traditional machine learning algorithms 
(such as XGBoost) over deep learning approaches (such 
as convolutional neural networks) due to our modest da-
taset size (n = 187 lesions), which may insufficiently train 
complex neural architectures prone to overfitting. A base-
line 3D CNN tested on our data yielded an AUC-ROC 
of 0.81 (95% CI: 0.76-0.86), underperforming XGBoost 
(0.87), supporting this choice. The 3D CNN consisted of 3 
convolutional layers (16, 32, and 64 filters), max-pooling, 
and dense layers, trained with a learning rate of 0.001 and 
batch size of 16, but was limited by the small dataset. Fu-
ture work could explore data augmentation or transfer 
learning to enhance deep learning performance with larg-
er datasets. Notable contributions to the field include the 
work of Shekari et al. [3], who conducted a comprehensive 
analysis of MS lesion activity in a cohort of 34 patients 
utilising multiple MRI sequences (T1W, T2W, FLAIR, 
and post-contrast T1W imaging). Their SVM classifier 
achieved remarkable performance, with an AUC of 0.957, 
demonstrating the potential of multi-sequence analysis in 
lesion activity classification. However, their work also had 
limitations, primarily due to the use of 2D image analysis 
instead of 3D and the absence of advanced MRI sequenc-
es such as DWI or SWI. While our cohort of 31 patients 
(187 lesions) from a single centre provides a robust proof 
of concept, the limited sample size and single-site data 
collection (BlindedHospital, 1.5 T Philips scanner) may 
restrict generalisability across diverse MS populations 
and imaging platforms. To explore this, we simulated 
scanner variability by adding Gaussian noise (σ = 0.1)  
to 20% of the test set, yielding a stable AUC-ROC of  
0.86 (95% CI: 0.81-0.91), suggesting resilience to minor 
imaging differences. Nonetheless, multi-centre validation 
with larger cohorts is essential to confirm these findings 
across varied demographics and MRI systems. Similarly, 
Rostami et al. [4] presented a comparative analysis of ma-
chine learning and deep learning approaches, examining 
a dataset comprising 75 active and 100 non-active MS 
lesions. Their sequential deep learning architecture de-
monstrated exceptional discriminative capability, achiev-
ing an AUC of 0.9560. These findings further substantiate 
the efficacy of advanced computational methods in MS 
lesion characterisation and highlight the potential advan-
tages of deep learning architectures in capturing complex 
imaging patterns associated with lesion acti vity. The rela-
tively restricted scope of previous single-sequence stud-
ies highlights the need for more comprehensive multi- 
parametric imaging approaches, which can better charac-
terise the multifaceted nature of MS pathology. By incor-

porating T1W T2W, FLAIR, DWI, and SWI sequences, 
we have developed a radiomic model that captures 
complementary information across multiple imaging 
parame ters. A key aspect of this study is the integration 
of SWI with conventional MRI sequences. While SWI has 
been explored for MS lesion analysis, this study builds 
on prior work by incorporating SWI-derived texture 
features into a comprehensive multi-sequence radiomic 
model, capturing subtle microvascular changes alongside 
white matter pathology [25]. The superior performance 
of our XGBoost-based model (AUC-ROC: 0.87, 95% CI:  
0.82-0.92) demonstrates the potential of machine learn-
ing approaches in accurately classifying MS lesion activi-
ty without the need for contrast admini stration. XGBoost 
was chosen for its ability to handle missing data, provide 
interpretable feature importance scores, and incorporate 
regularisation to reduce overfitting. Notably, our model 
maintained consistent performance across various MS 
subtypes, with only slightly lower accuracy in progres-
sive forms compared to RRMS. This robust performance 
across different disease phenotypes suggests broad clini-
cal applicability. The stability of our model’s performance 
across lesion sizes and locations further supports its po-
tential utility as a clinical decision support tool.

The classifiers are numbered as follows: (1) random  
forest, achieving an AUC-ROC of 0.83 (95% CI: 0.77-0.89), 
with balanced reliance on texture features; (2) logistic re-
gression, with an AUC-ROC of 0.79 (95% CI: 0.73-0.85), 
reflecting moderate efficacy under linear modelling;  
(3) XGBoost, yielding the highest AUC-ROC of 0.87  
(95% CI: 0.82-0.92), driven by strong FLAIR-derived fea-
ture contributions (35.4% of selected features); (4) KNN, 
with an AUC-ROC of 0.76 (95% CI: 0.70-0.82), show-
ing limited sequence robustness; (5) decision tree, with  
an AUC-ROC of 0.75 (95% CI: 0.69-0.81), providing 
a baseline tree-based approach; and (6) SVM, achieving an 
AUC-ROC of 0.84 (95% CI: 0.78-0.90).

Conclusions
While preliminary, these findings suggest the potential 
for clinical translation of a multi-sequence MRI-based 
radiomic approach combined with machine learning 
for classifying MS lesion activity. The XGBoost model 
achieved robust performance (AUC-ROC: 0.87, 95% CI: 
0.82-0.92) in differentiating active from non-active MS le-
sions across various disease subtypes. By achieving prom-
ising accuracy, comparable to radiologist performance 
without contrast, this automated approach supports 
gadolinium-free protocols for MS lesion monitoring, 
potentially reducing associated risks and costs. External 
validation on an independent dataset is planned, to assess 
real-world performance, a critical step for clinical adop-
tion. Future studies should explore longitudinal data and 
integration into PACS systems to validate these findings 
and optimise the model for clinical practice.



Mohammadreza Elhaie, Masoud Etemadifar, Alireza Rezaei Adariani, et al.  

e402 © Pol J Radiol 2025; 90: e394-e403

References

1. Bandô Y. Mechanism of demyelination and remyelination in multi-
ple sclerosis. Clin Exp Neuroimmunol 2020; 11(S1): 14-21.

2. Jalilian M, Elhaie M, Sharifi M, Abedi I. Assessment of axonal injury 
in multiple sclerosis: combined analysis of serum light-chain neu-
rofilaments and diffusion tensor imaging. BMJ Neurol Open 2024; 
6: e000788. DOI: 10.1136/bmjno-2024-000788.

3. Shekari F, Vard A, Adibi I, Danesh-Mobarhan S. Investigating the 
feasibility of differentiating MS active lesions from inactive ones us-
ing texture analysis and machine learning methods in DWI images. 
Mult Scler Relat Disord 2024; 82: 105363. DOI: 10.1016/j.msard. 
2023.105363.

4. Rostami A, Robatjazi M, Dareyni A, Ghorbani AR, Ganji O, Siyami M, 
et al. Enhancing classification of active and non-active lesions in 
multiple sclerosis: machine learning models and feature selection 
techniques. BMC Med Imaging 2024; 24: 345. doi: 10.1186/s12880-
024-01528-6.

5. Luo W, Huang QX, Huang XW, Matsumoto S, Zeng F, Wang W. 
Predicting breast cancer in Breast Imaging Reporting and Data Sys-
tem (BI-RADS) ultrasound category 4 or 5 lesions: a nomogram 
combining radiomics and BI-RADS. Sci Rep 2019; 9: 11921. DOI: 
10.1038/s41598-019-48488-4.

6. Liu Q, Sun D, Li N, Kim JM, Feng D, Huang G, et al. Predicting 
EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG 
PET/CT radiomic features. Translat Lung Cancer Res 2020; 9:  
549-562.

7. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, 
et al. Radiomics: the facts and the challenges of image analysis. Eur 
Radiol Exp 2018; 2: 36. DOI: 10.1186/s41747-018-0068-z.

8. Ahmadzadeh AM, Lomer NB, Torigian DA. Radiomics and ma-
chine learning models for diagnosing microvascular invasion in 
cholangiocarcinoma: a systematic review and meta-analysis of diag-
nostic test accuracy studies. Clin Imaging 2025; 121: 110456. DOI: 
10.1016/j.clinimag.2025.110456.

9. Coll L, Pareto D, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, 
Vidal-Jordana Á, et al. Deciphering multiple sclerosis disability with 
deep learning attention maps on clinical MRI. Neuroimage Clin 
2023; 38: 103376. DOI: 10.1016/j.nicl.2023.103376.

10. Taloni A, Farrelly FA, Pontillo G, Petsas N, Giannì C, Ruggieri S, 
et al. Evaluation of disability progression in multiple sclerosis via 
magnetic-resonance-based deep learning techniques. Int J Mol Sci 
2022; 23: 10651. DOI: 10.3390/ijms231810651.

11. Pilehvari S, Morgan Y, Peng W. An analytical review on the use of 
artificial intelligence and machine learning in diagnosis, prediction, 
and risk factor analysis of multiple sclerosis. Mult Scler Relat Disord 
2024; 89: 105761. DOI: 10.1016/j.msard.2024.105761.

12. Elhaie M, Koozari A, Shahbazi-Gahrouei D. Machine learning and 
neural network approaches for enhanced measuring and prediction 
of radiation doses. J Radiat Res Appl Sci 2025; 18: 101252. DOI: 
https://doi.org/10.1016/j.jrras.2024.101252.

13. Caruana G, Pessini LM, Cannella R, Salvaggio G, de Barros A, Saler-
no A, et al. Texture analysis in susceptibility-weighted imaging may 
be useful to differentiate acute from chronic multiple sclerosis le-
sions. Eur Radiol 2020; 30: 6348-6356.

14. Dong H, Yang G, Liu F, Mo Y, Guo Y. Automatic brain tumor de-
tection and segmentation using U-net based fully convolutional 
networks. arXiv:1705.03820 2017. DOI: https://doi.org/10.48550/
arXiv.1705.03820.

15. Bleker J, Roest C, Yakar D, Huisman H, Kwee TC. The effect of im-
age resampling on the performance of radiomics-based artificial 
intelligence in multicenter prostate MRI. J Magn Res Imaging 2023; 
59: 1800-1806.

16. Jaber HA, Aljobouri HK, Çankaya İ, Koçak OM, Algın O. Preparing 
fMRI data for postprocessing: conversion modalities, preprocessing 
pipeline, and parametric and nonparametric approaches. IEEE Ac-
cess 2019; 7: 122864-122877.

17. Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, 
Narayan V, et al. Computational radiomics system to decode the radio-
graphic phenotype. Cancer Res 2017; 77: e104-e107. DOI: 10.1158/ 
0008-5472.CAN-17-0339.

18. Ranjbarzadeh R, Kasgari AB, Ghoushchi SJ, Anari S, Naseri M, Ben-
dechache M. Brain tumor segmentation based on deep learning and 
an attention mechanism using MRI multi-modalities brain images. 
Sci Rep 2021; 11: 10930. DOI: 10.1038/s41598-021-90428-8.

19. Moradmand H, Aghamiri SMR, Ghaderi R. Impact of image pre-
processing methods on reproducibility of radiomic features in mul-
timodal magnetic resonance imaging in glioblastoma. J Appl Clin 
Med Phys 2019; 21: 179-190.

20. Mohammadi-Sadr M, Cheki M, Moslehi M, Zarasvandnia M, Sala-
mat MR. A novel approach based on integrating radiomics, bone 
morphometry and hounsfield unit-derived from routine chest 
CT for bone mineral density assessment. Acad Radiol 2025; 32: 
2284-2296.

Disclosures 
1.  Institutional review board statement: This study was 

reviewed and approved by the Isfahan University of 
Medical Sciences Institutional Review Board under the 
approval number IR.MUI.MED.REC.1403.050.

2. Assistance with the article: None. 
3.   Financial support and sponsorship: This study was 

funded financially (Grant No: 3402745) by Isfahan Uni-
versity of Medical Sciences, Isfahan, Iran. 

4. Conflicts of interest: None.

AI use declaration
This manuscript was reviewed using Grok 3 solely for the 
purpose of grammar correction and language refinement, 
as the authors are non-native English speakers. The intel-
lectual content, data analysis, and conclusions are entirely 
the work of the authors.



ML-based MS lesion activity classification using multi-sequence MRI radiomics

e403© Pol J Radiol 2025; 90: e394-e403

21. Tripathy RK, Sharma LN, Dandapat S. Diagnostic measure to quan-
tify loss of clinical components in multi-lead electrocardiogram. 
Healthc Technol Lett 2016; 3: 61-66.

22. Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence 
in MS clinical practice. Neuroimage Clin 2022; 35: 103065. DOI: 
10.1016/j.nicl.2022.103065.

23. Spagnolo F, Depeursinge A, Schädelin S, Akbulut A, Müller H,  
Barakovic M, et al. How far MS lesion detection and segmentation 
are integrated into the clinical workflow? A systematic review. Neu-
roimage Clin 2023; 39: 103491. DOI: 10.1016/j.nicl.2023.103491.

24. Khajetash B, Talebi A, Bagherpour Z, Abbaspour S, Tavakoli M. 
Introducing radiomics model to predict active plaque in multiple 
sclerosis patients using magnetic resonance images. Biomed Phys 
Eng Express 2023; 9. DOI: 10.1088/2057-1976/ace261.

25. Caruana G, Pessini LM, Cannella R, Salvaggio G, de Barros A, Saler-
no A, et al. Texture analysis in susceptibility-weighted imaging may 
be useful to differentiate acute from chronic multiple sclerosis le-
sions. Eur Radiol 2020; 30: 6348-6356.


