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Abstract
Purpose: Lung cancer is one of the most common types of cancer, and the presence of brain metastases has a signi­
ficant impact on the clinical course and prognosis. EGFR, BRAF, ALK, and ROS1 mutations have previously been 
identified in lung cancer, and knowing the tumour mutation status is important for molecular therapy. In our study, 
we investigated the performance of radiomics in predicting the status of brain metastases detected by brain magnetic 
resonance imaging (MRI), a noninvasive method, in with brain metastases patients diagnosed with lung cancer.

Material and methods: Lung cancer cases with brain metastasis in our hospital between 2014 and 2024 were analysed 
retrospectively. Histopathological data were obtained from tissue biopsy results, and EGFR, BRAF, ALK, and ROS1 
mutation status were recorded. A total of N = 84 patients were included in the study, and 107 original radiomics 
parameters were obtained from the segmentation files extracted from the patient images. Due to the class unbalance, 
the performance of the model was tested using the stratified folding method.

Results: Five (6.02%) of the patients had EGFR, 3 (4.17%) had ALK, and 2 (2.78%) had ROS1 mutations. Model 1 used 
for EGFR mutation prediction showed high performance with 93.82% accuracy, Model 2 used for ALK with 84.76% 
accuracy, and Model 3 used for ROS1 with 79.33% accuracy.

Conclusion: Our study showed that EGFR mutations, in particular, can be detected with high accuracy by radiomics 
in lung cancer patients with brain metastases without additional invasive procedures.
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Introduction
Lung cancer is the second most common type of cancer 
diagnosed, and non-small cell lung cancer (NSCLC) is 
the most common type, representing about 85% of cases 
[1]. Brain metastases develop in up to 90% of all cases 
of lung cancer and are associated with a shorter survival 
time and a poor prognosis [2-4]. Survival and prognosis 
are worse in cases with brain metastases. Prior to treat­

ment in lung cancer, molecular testing for the epidermal 
growth factor receptor (EGFR), v-Raf murin sarcoma vi­
ral oncogene homologue B (BRAF), anaplastic lymphoma 
kinase (ALK), and ROS oncogene 1 (ROS1) genes are 
commonly used, and treatment options are based on the 
mutation status detected in the cancer. The treatment op­
tions for cases of non-small cell lung cancer have recently 
been expanded, and molecularly targeted therapies have 
been added to the protocol. Pharmacological agents that 
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may enter the central nervous system in NSCLC patients 
have been reported to have a positive effect on survival in  
the treatment of brain metastases. Therefore, the availabil­
ity of molecular information is essential for the planning 
of treatment and the prediction of survival [5].

However, invasive biopsy or surgical resection of me­
tastases for molecular diagnosis is not practical because 
brain metastases are usually small and widely distributed. 
Consequently, most metastatic brain lesions are detected 
by magnetic resonance imaging (MRI) without histopa­
thological confirmation. Thus, non-invasive imaging mo­
dalities are currently the preferred approach to evaluate 
the mutational status of lung cancer brain metastasis [6,7].

Radiomic analysis can be used to comprehensively 
study spatially and temporally heterogeneous tumours 
through the extraction of a large number of points from 
radiological images [8]. Conventional radiologic imaging 
evaluates brain lesions for size, location, signal charac­
teristics, and peritumoral area. However, the human eye 
may fail to discriminate features related to tumour texture, 
shape, and image intensity in radiological analysis [9,10]. 
Since microstructural features of tumour tissue can be 
determined by radiomic analysis, it is a potentially useful 
tool for the identification of genetic mutations and per­
sonalised treatment protocols.

The focus of radiomics may be to obtain high-dimen­
sional features in order to capture all of the features of the 
image under investigation [11]. In radiomics, first-order 
methods typically rely on histogram analysis based on 
analysis of individual voxels [12,13]. Second-order meth­
ods are typically based on texture analysis and reveal sta­
tistical relationships between voxels as a function of con­
trast values [14,15]. Higher-order methods can extract 
repetitive or non-repetitive patterns using various filters 
[16,17]. Examples of higher-order methods include Gauss­
ian bandpass filtering and Minkowski filtering [18,19].

In our study, we hypothesise that radiomics of tumour 
segmentation on post-contrast T1-weighted (W) imaging 
in lung cancer patients with brain metastases can be used 
to predict EGFR, BRAF, ALK, and ROS1 mutation status 
on contrast-enhanced brain MRI. Therefore, decision tree 
machine learning models were developed to determine 
mutation status. The models were optimised consider­
ing the imbalanced dataset problem and evaluated using 
5-fold cross-validation with the layered convolutional 
method.

Material and methods

Study design 

A retrospective study was performed on lung cancer cases 
with brain metastasis in our hospital between January 
2014 and April 2024. The study was approved by the in­
stitutional review board. The data of the study population 
were collected in a retrospective manner from the hospital 

information system. Histopathologic data were extracted 
from pathology reports after tissue biopsy, noting tumour 
subtype and EGFR, BRAF, ALK, and ROS1 mutation sta­
tus. The presence of brain metastases was confirmed on 
post-contrast T1A series obtained after using gadolinium-
based contrast. Patients were excluded from the study for 
the following reasons: (1) previous neurosurgery (n = 25), 
(2) previous brain radiotherapy (n = 21), (3) presence of 
another primary tumour (n = 7), (4) poor image quality 
(n = 5), (4) EGF, BRAF, ALK, and ROS1 mutation sta­
tus not checked (n = 42), (5) failure to select detectable 
brain metastases (n = 3), and (6) cases without contrast-
enhanced brain MRI (n = 3). In addition, due to the dif­
ficulty of assessment, metastases with a largest diameter 
of less than 5 mm were not included in the study. After 
all exclusions, 84 patients were included in the study. For 
cases with multiple metastases, the largest single metas­
tasis was included in the study. Informed consent was 
waived due to the retrospective nature of the study. All 
data were made completely anonymous by masking per­
sonal information.

Pathological mutation analysis

The specimens were fixed in 10% formalin and cut into 
5 to 10 mm thick sections. To evaluate tumour morpho­
logy and expression of IHC markers, haematoxylin and 
eosin (H&E) slides and IHC were examined by a thoracic 
pathologist. All cases were staged in accordance with the 
American Joint Committee on Cancer (AJCC) 8th edition.

The AmoxyDx EGFR 29 Mutation Detection Kit is 
a real-time PCR assay for the qualitative detection of  
29 somatic mutations in exons 18, 19, 20, and 21 of the 
EGFR gene in human genomic DNA extracted from for­
malin-fixed paraffin-embedded tumour tissue, and it was 
used for mutation analysis.

The AmoyDx BRAF Mutation Detection Kit is a real- 
time PCR test for the qualitative detection of V600E, 
V600E2, V600K, V600D, V600D2, V600A, and V600R 
mutations in the BRAF gene, and it was used for muta­
tion analysis. 

It is designed for the qualitative detection of transloca­
tions involving the ALK and ROS1 genes by fluorescence 
in situ hybridisation (FISH). Fluorescently labelled DNA 
fragments and complementary target DNA strands are de­
natured together and then allowed to bind to each other 
during the hybridisation process. This method has been 
used to investigate the presence of mutations.

Imaging process

A total of N = 84 patients were included in the study. 
A flow chart summarising the criteria for the study is 
shown in Figure 1. The radiomic parameters from pa­
tient images and segmentation files in .nrrd format were 
extracted with PyRadiomics (version 3.1.0, with Python 
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3.11.7) [20]. The textural features, including Gray Level 
Co-occurrence Matrix (GLCM, 24 features), Gray Level 
Run Length Matrix (GLRLM, 16 features), Gray Level 
Size Zone Matrix (GLSZM, 16 features), and Neighbor­
ing Gray Tone Difference Matrix (NGTDM, 5 features), 
with a total of n = 107 original radiomics parameters 
and n = 13 diagnostic parameters, were extracted. Data 
were recorded in .csv format, edited in Microsoft Excel 
software, and imported to Stata 15.1 software (StataCorp 
4905 Lakeway Drive, College Station, Texas 77845 USA).  
The patient database and radiomics databases were com­
bined by using Stata 15.1 via established key variables.  
All data visualisations, including biplots, ROC curves, and 
heat maps, were performed with Stata 15.1. Heat maps 
(including histograms and correlation matrices) were cre­
ated with the heatplot module [21]. The scheme for visual­
ising metastasis in postcontrast T1W sequences on MRI, 
segmentation, extraction radiomics features, and making 
predictions is shown in Figure 2.

In this study, decision tree-based machine learning 
models were developed to detect EGFR, ALK, and ROS 
mutations. The models were optimised by considering the 
unbalanced dataset and evaluated by using Stratified Fold 
method 5-fold cross validation [22]. For the preprocessing 
step, the missing data were imputated with appropriate 
methods, where the observations with missing target fea­
ture were dropped. Diagnostic features, including size and 
spacing features of image and mask, bounding box, centre 
of mass and centre of index features of mask, were used 
intensively in the data preprocessing step. In the feature 
engineering step, physical dimensions and volume were 
calculated using size and spacing diagnostic features of the 
original image. Centre of mass and distribution features 
were calculated using centre of mass and centre of mass 
index of mask. The features were normalised to improve 
model performance.  For each model, true positive, true 
negative, false positive, and false negative observations 
were classified with confusion matrices. Accuracy, preci­

sion, recall, and F1-score were reported for each model. 
The dataset included diagnostic and original features, in 
addition of engineered features. According to the feature 
selection step, features with highest importance were Gray 
Level Co-occurrence Matrix Joint Average (0.125), Maxi­
mum 2D diameter (Slice) (0.075), Surface Area (0.067), 
Neighboring Gray Tone Difference Matrix Complex­
ity (0.050), and Gray Level Co-occurrence Matrix Clus­
ter Prominence (0.045) (Table 1). For the unbalanced  
dataset problem, the hyperparameters of maximum 
depth = 4, minimum samples split = 2, minimum sam­
ples leaf = 6, and balanced class weight were used [23].  
The stratified fold method was used to stratify the dataset 
by keeping class unbalance for each stratum. This method 
was employed to evaluate the model performance in un­
balanced datasets correctly.  

Statistical analysis

The normal distribution of variables was tested with his­
togram, normal quantile graph, Kolmogorov-Smirnov, 
and skewness kurtosis tests. The variables with normal 
distribution were presented with mean ± standard devia­
tion, and the variables without normal distribution were 
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Figure 1. Flowchart of the study population and process

Figure 2. Schema for brain tumour segmentation and radiomic feature extraction. A) Contrast-enhanced T1W sequence to determine metastasis localisation. 
B) Segmented enhancing tumour on contrast-enhanced T1W sequence. C) Radiomic feature extraction with first- and second-order statistics. D) Analysis
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presented with median and IQR values, in addition to 
minimum and maximum values. Categorical variables 
were presented as counts and percentages. The distribu­
tion of variables without normal distribution among in­
dependent groups were tested with Mann-Whitney U test.  
For the discriminatory analysis, radiomic variables showing 
significant difference were selected. Kth nearest neighbour 
method was used for discriminant analysis, where different 
k-values were used iteratively to minimise the error rate. 
Leave-one-out tables were used for cross validation in dis­
criminant analysis. Sensitivity, specificity, and positive and 
negative predictive values were calculated for each model 
and presented with 95% confidence intervals. A p-value less 
than 0.05 was considered statistically significant.  

Results
The mean age of the patients was 67.61 ± 9.74 years, and 
most of the patients were male (n = 70, 83.33%). The dia­
gnosis of most of the patients was lung adenocarcinoma 
(n = 77, 91.67%); however, 2 cases were diagnosed as lung 
squamous cell carcinoma, 1 case was large cell neuroen­
docrine carcinoma, and 1 case was diagnosed as cystic 
mesothelioma. Additionally, 3 cases were diagnosed with 
NSCLC that could not be subtyped [24]. Other demo­
graphical and clinical characteristics of the patients are 
shown in Table 2. 

The confusion matrices for each model are presented 
in Table 3. The model for EGFR had 32 true negative and 
2 true positive observations out of 34 patients, where no 
patients were classified as false negative or false positive. 
Similarly, the model for ALK classified 28 patients as true 
negative, and one patient as true positive without any false 
negative or false positive classifications. The model for 
ROS1 correctly classified all true negative patients (n = 28), 
but one patient was misclassified as false positive. 

The performance metrics of 3 models predicting 
EGFR, ALK, and ROS1 mutations is presented in Table 4. 
The decision tree model for EGFR has the highest diagnos­
tic performance, including an accuracy of 93.82%, preci­
sion of 97.85%, recall of 93.82%, and F-1 score of 95.10%. 
While the model classified all 14 true negative patients 
correctly, only one patient has been classified as true posi­

Table 1. Selected features are shown

Feature Importance

og_glcm_JointAverage 0.125303

og_shp_Max2DDiamSlice 0.075222

og_shp_SurfaceArea 0.066667

og_ngtdm_Complexity 0.049600

og_glcm_ClusterProminence 0.044888

og_glszm_LargeAreaE 0.040694

og_shp_VoxVol 0.036880

og_glszm_SmallAreaHighGylvlE 0.024892

og_shp_SurfaceVolRatio 0.024245

og_glrlm_sh_RunHighGylvlE 0.023736

og_1_order_Entropy 0.022761

og_ngtdm_Busyness 0.020985

og_gldm_DepEntropy 0.020121

og_ngtdm_Strength 0.018255

og_1_order_MeanAbsolutedev 0.016667

dx_Imageog_Max 0.015079

dx_Maskog_C_OfMassIndex_Mean 0.015079

og_glcm_Imc1 0.014844

og_glcm_Id 0.014541

dx_Maskog_VoxNum 0.014541

og_glszm_SmallAreaE 0.014137

og_1_order_Max 0.014137

og_glszm_GylvlNonUni 0.014137

og_glcm_MaxProbability 0.014137

og_glcm_Autocorrelation 0.013818

og_shp_Flatness 0.013571

og_glcm_ClusterShade 0.013212

og_gldm_HighGylvlE 0.013102

dx_Maskog_C_OfMass_Mean 0.012723

og_ngtdm_Contrast 0.012338

og_glcm_DifferenceEntropy 0.012315

og_gldm_DepNU 0.011548

og_glrlm_RunVar 0.011515

age 0.011515

og_1_order_IQR 0.011310

og_glszm_SizeZoneNUN 0.011310

og_glrlm_RunEntropy 0.010608

og_glszm_ZoneEntropy 0.010560

og_glcm_JointEntropy 0.009481

dx_Maskog_BoundingBox_Volume_mm3 0.008985

og_1_order_Var 0.008796

Image71 0.008636

og_1_order_Range 0.008064

Feature Importance

og_glcm_Imc2 0.007499

og_shp_Sphericity 0.006781

og_1_order_Energy 0.006473

og_gldm_LargeDepE 0.005758

og_1_order_RootMeanSquared 0.004398

og_glcm_ClusterTendency 0.004353

gender 0.002848
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tive out of 2 positive patients. The model for ALK has an 
accuracy of 84.76%, precision of 93.58%, recall of 84.76%, 
and F-1 score of 88.48%. Similarly to the EGFR model, 
the ALK model classified all negative patients (n = 11) 
correctly; however, 2 patients out of 3 positives were clas­
sified as false negative. Finally, the ROS1 model had accu­
racy of 79.33%, precision of 94.20%, recall of 79.33%, and 
F-1 score of 85.91%. Similarly to the previous models, the 
model predicted true negative patients (n = 12) perfectly, 
but the model could not detect true positive patients and 
misclassified them as negative (n = 2 false negative). Re­
ceiver operating characteristic (ROC) curves for classifying 
EGFR, ALK, and ROS1 mutation status are shown in Fig­
ure 3. Heatmaps of the EGFR, ALK, and ROS1 mutation 
status of the cases are shown in Figure 4.

Discussion
This study shows that radiomics analysis can be used to 
predict the tumour subtype and EGFR, ALK, and ROS1 
mutation status in NSCLC cases with brain metastases. 
Although the EGFR model has the highest diagnostic per­
formance among the models, all 3 models have high pre­
cision values, ranging from 93.58% to 97.85%, which re­
flects the low rate of false positive cases. The stratified fold 
method enabled us to evaluate the model performance 
by keeping the class unbalance [22]. Evidence shows that 
decision tree models are effective in unbalanced datasets 
with hyperparameter optimisation. 

Radiomics is a computational method for the transfor­
mation of tumour images into a large number of quantita­
tive features. Here, we developed machine learning models 
to classify the molecular mutation status of EGFR (more 
commonly reported) and ALK and ROS1 (less commonly 
reported) in lung cancer. Thus, we have demonstrated that 
MRI and radiomics analysis of brain metastases can be an 
alternative, non-invasive method for the classification of 
EGFR, ALK, and ROS1 mutations in lung cancer patients.

There is no study in the literature on the analysis of 
ROS1 mutations using artificial intelligence algorithms 
based on the radiological features of the tumour in cases 
of primary lung cancer. In this regard, our study can be 
considered as the first study to investigate the less com­
mon mutations such as ROS1. Mayer et al.’s study [25], 
conducted on pathological diagnosis prediction of ALK 
and ROS1 mutations using deep learning algorithms, re­
ported specificities of 100% and 98.48%, respectively. In 
the study of Chen et al. [26], which used imaging-based 

radiomics and machine learning (ML) in the field of ra­
diology, it focused on EGFR, ALK, and KRAS mutations 

Table 2. Demographic and clinical characteristics of the patients

Demographic and clinical characteristics

Age (years), mean ± SD; range 67.61 ± 9.74; 36-94

Gender (male), n (%) 70 (83.33) 

Histology, n (%)

Lung adenocarcinoma 77 (91.67)

NSCLC 3 (3.57)

Lung squamous cell carcinoma 2 (2.38) 

Large cell neuroendocrine carcinoma 1 (1.19)

Cystic mesothelioma 1 (1.19)

Number of metastases, n (%)

1 31 (59.62)

2 12 (23.08)

3 5 (9.62)

4 1 (1.92)

5 1 (1.92)

7 1 (1.92)

> 10 1 (1.92)

Largest metastasis (in mm), median (IQR); 
range 

18 (12.5); 3-60

Location of metastases, n (%)

Frontal 25 (48.08)

Cerebellar 15 (28.85)

Occipital 5 (9.62)

Parietal 2 (3.85)

Temporal 2 (3.85)

Brain stem 1 (1.92)

Corpus callosum 1 (1.92)

Thalamic 1 (1.92)

Mutations, n (%)

EGFR 5 (6.02)

BRAF 0 (0)

ALK 3 (4.17)

ROS1 2 (2.78)
NSCLC – non-small cell lung cancer, EGFR – epidermal growth factor receptor, BRAF –v-Raf 
murin sarcoma viral oncogene homologue B, ALK – anaplastic lymphoma kinase, ROS1 – ROS 
oncogene 1, mm – millimetre

Table 3. Metrics for model performance (5-fold cross validation) 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Test counts

EGFR (DT-HPT) 93.82 97.85 93.82 95.10 0 : 15, 1 : 1

ALK (DT-HPT) 84.76 93.58 84.76 88.48 0 : 13, 1 : 1

ROS1(DT-HPT) 79.33 94.20 79.33 85.91 0 : 13, 1 : 1
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in brain metastatic NSCLC. The specificities for EGFR, 
ALK, and KRAS mutations were 90.6%, 88.7%, and 97.7%, 
respectively [26]. Another study by Haim et al. [27] used 
deep learning (DL) to predict EGFR mutant status in 
NSCLC brain metastasis with a specificity of 97.7%. 

Studies on the determination of primary lung cancer 
subtypes by non-invasive techniques based on radiomic 
features of tumour tissue have been reported in the lite­
rature [28,29]. Previously, Li et al. [30] used quantitative 
radiomic features from MR images of brain metastases 
to predict pathologic subtypes of primary lung cancers, 
reporting a 97.8% specificity for differentiating small-cell 
and non-small-cell lung cancers in their back-propagation 
artificial neural network (BP-ANN) model. The literature 
also reported the prediction of primary cancers based on 
radiomic analysis of brain metastases. Discrimination of 
primary tumour diagnoses such as lung cancer-breast 
cancer, lung cancer-melanoma have been reported with 
successful results [31,32]. 

Identification of common oncogenic mutations has 
implications for prognostic and therapeutic strategies in 
cancer treatment. Moreover, lung cancer patients have 
been reported to be more prone to brain metastasis with 
EGFR mutations and ALK translocations [33]. Therefore, 
pre-treatment mutation detection is helpful in predicting 
metastatic potential and prognosis. Tyrosine kinase inhib­
itors and ALK inhibitors, which target mutations during 
the treatment process, are known to positively affect over­
all survival in patients with EGFR and ALK alterations, re­
spectively [7]. Another molecular subset is represented by 
the newly identified ROS1 mutation in lung adenocarci­
noma, which has almost no overlap with the known driver 
mutations [34,35]. The MET/ALK/ROS1 inhibitor crizo­
tinib has reportedly shown impressive clinical activity in 
patients with advanced ROS1-positive lung cancer [36]. 
In light of the above, the assessment of the metastatic sta­
tus of the primary tumours using radiomics has become 
one of the most important steps in patient management 
and treatment. Radiomics plays a key role in this process 
by providing information through extraction and process­
ing of visual features that are not discriminable by human 
eye [37,38].

Recently, an increasing number of studies have been 
performed to determine the mutation status in the prima­
ry tumour using radiomics [39-41]. Some of these studies 
used image features of the primary tumour in chest com­
puted tomography and considered AUC values to estimate 
mutation status. Most of the studies in this field have used 
radiomic features extracted from chest CT images, and 
the highest AUC value reported among them was 0.89 in 
the study by Gevaert et al. [42]. More meaningful results 
can be obtained by estimating the radiomic features of 
the primary tumour and metastasis using the multimo­
dality approach. Moreover, new results may be obtained 
by evaluating radiologic and pathologic features together, 
using different artificial intelligence algorithms [39,42].

The geratest limitation of this study is the limited 
number of positive observations for each mutation. Since 
the number of mutation-positive patients for EGFR, ALK, 
and ROS1 genes was 5 or less, the positive predictive val­
ues of the discriminatory models were very low. Because 
the cases included in the study did not have BRAF muta­
tion, it was not possible to perform radiomics for this mu­
tation. Furthermore, the number of patients was limited 
with listwise deletion in case of missing target variable, 
12 patients for ALK and 12 patients for ROS1 mutation. 
It is clear that further studies with larger case groups are 
needed to predict mutations associated with brain metas­
tases in NSCLC with the help of radiomics. 

In our study, the mutation analysis was performed on 
a sample taken from the primary tissue of lung cancer, 
and there is no histopathologic definition of brain metas­
tasis. Recent studies have reported no overlap in EGFR 
mutation status between primary and metastatic tissues 
[43,44]. According to a meta-analysis, the EGFR incom­
patibility rate between central nervous system metasta­
sis and primary tumour is 17.26% [45]. This situation is 
based on the different genetic profiles of cancer cells in the 

Table 4. Model performance metrics (5-fold cross validation)

Model True negative True positive

EGFR Negative prediction 14 (TN) 1 (FN)

Positive prediction 0 (FP) 1 (TP)

ALK Negative prediction 11 (TN) 2 (FN)

Positive prediction 0 (FP) 1 (TP)

ROS1 Negative prediction 12 (TN) 2 (FN)

Positive prediction 0 (FP) 0 (TP)
EGFR – epidermal growth factor receptor, BRAF – v-Raf murin sarcoma viral oncogene homo-
logue B, ALK –anaplastic lymphoma kinase, ROS1 – ROS oncogene 1, DT-HPT – Decision Tree- 
Hyperparameter Tuning

DecisionTree_Model1_EGFR (AUC = 0.97)
DecisionTree_Model2_ALK (AUC = 0.92)
DecisionTree_Model3_ROS1 (AUC = nan)

Figure 3. ROC-AUC curves for EGFR, ALK, and ROS1 models
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Figure 4. Heat maps for correlation analysis for feature selection of EGFR, ALK, and ROS1 mutations are shown (red colour refers to positive correlations, and 
blue colour refers to negative correlations; different colour depth indicates different values of correlation coefficients)
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literature [46]. In daily practice, the second interventional 
procedure for tissue diagnosis of brain metastasis in can­
cer cases with primary tissue diagnosis may increase the 
morbidity and workload in the case. Therefore, we believe 
our study provides results that will influence routine clini­
cal outcomes and facilitate treatment.

This study demonstrates the potential of machine 
learning models in predicting genetic mutations using 
radiomic features. In particular, the prediction of EGFR 
mutations was highly successful. Future studies aim to 
further improve the performance by expanding the data­
set and using deep learning methods.
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