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Abstract
Purpose: Cervical cancer continues to be one of the leading causes of death among females worldwide, and thus early 
diagnosis by using more advanced diagnostic procedures is crucial. The conventional Pap-smear procedure is accu-
rate but subject to human error; thus, computerised, standardised, and automated diagnosis becomes imperative. 
Herein we present a novel framework of a fuzzy distance-based ensemble of convolutional neural networks (CNNs) 
for efficient cervical cancer classification from Pap-smear images.

Material and methods: The proposed approach integrates 5 models of CNN – Simple CNN, InceptionV3, Xception, 
Xception with Attention, and Inception Attention – via attention mechanisms to advance feature learning. A fuzzy 
distance-based aggregator function is introduced to fuse the predictions of these models optimally as per Eucli
dean, Manhattan, and cosine distance measures. Four advanced pre-processing techniques – wavelet denoising, 
contrast-limited adaptive histogram equalisation (CLAHE), background correction, and Laplacian sharpening – are 
employed to construct a cleaner dataset with enhanced image sharpness and segmentation.

Results: Experimental outcomes prove that the model is significantly better than state-of-the-art approaches, with  
an accuracy of 94% on the original dataset and 98.3% on the pre-processed dataset. 

Conclusions: The method suggested herein has better noise robustness, interpretability through fuzzy logic, and auto-
matic adaptation to various CNN frameworks without fine-tuning. These results acknowledge the promise of fuzzy 
logic-based CNN ensembles to improve machine-based cervical cancer diagnosis, which could be mapped to better 
and scalable diagnostic instruments in medical imaging.
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Introduction
Cervical cancer develops in the cells of the cervix and the 
lower part of the uterus. Most cases of cervical cancer result 
from high-risk, sexually transmitted human papillomavi-
ruses (HPV). According to statistics, the second most com-
mon cause of death among women is cervical cancer [1]. 
In 2018, most of the cases and fatalities from cervical 
cancer were seen in low- and middle-income countries, 
where access to screening on a regular basis and early 

intervention detection is usually low. It is important to 
have regular check-ups and early identification of cervical 
cancer, and cytological tests, such as the Pap-smear test, are 
among the most effective methods of early detection [2]. 
Cervical Pap smears are used to detect precancerous or 
abnormal cells within the cervix (uterus’ opening). To de-
termine whether abnormal cells have spread, a sample is 
carefully taken from the cervix and analysed [3]. Due to 
their lower proneness to human errors, computer-aided 
detection methods have gained popularity in place of 
manual diagnosis [4]. The algorithms analyse images to 
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determine whether the cases are healthy or diseased based 
on their input. In recent years there have been many pub-
lications on the use of machine learning (ML) to detect 
cervical cancer early [5-7]. Generally, these algorithms 
are trained on a given dataset for the extraction of some 
characteristics for classification.

It has always been the first choice for outstanding 
performance over classical handcrafted feature engineer-
ing to use CNNs. Developed initially for document rec-
ognition, CNNs have been extensively applied to image, 
video, voice, and audio processing over the past decades 
to solve interdisciplinary research challenges [8,9]. There 
are 2 components to a traditional CNN: a feature extrac-
tor and a classifier model, both of which are learned dur-
ing training. In addition to CNN, there are other issues to 
consider. Improved performance is usually achieved by 
combining additional techniques with convolutional neu-
ral networks. It has been suggested that multiple CNNs 
can be combined to make more informed decisions. Using 
weighted SVMs [10], proposed aggregating multiple CNN 
architectures for classifying handwritten music symbols 
using a trainable aggregator function. An aggregation 
method based on fuzzy Choquet integrals was used to rec-
ognise human actions [11]. As its performance depends 
on tuning, this aggregator function can be considered 
a tuneable aggregator.

Several researchers, such as Chakraborty et al. [12], 
used ensemble approaches that aggregate the outputs of 
CNNs using sum and product rules to eliminate the need 
for training or tuning. Trainable aggregator functions may 
benefit scenarios with several classes and when the under-
lying classifiers provide conflicting predictions. In such in-
stances, these algorithms may consolidate characteristics 
to ensure accurate classification of a sample. Tuneable and 
non-parametric aggregators are quite nominal when the 
target or output classes are limited, and the outputs of the 
base classifiers are not significantly divergent [13]. Because 
CNNs require large datasets with labelled images (Pap 
smears, colposcopy, and histopathology) and substantial 
computational resources, transfer learning is utilised, 
applying pre-trained models for feature extraction [14]. 
Transfer learning models like AlexNet, Inception, 
ResNet-101, and Xception have achieved high accuracy 
in classifying cervical cell images [15]. Because AlexNet 
is prone to overfitting, ResNet requires large datasets for 
training and is computationally expensive. Variants of 
Inception and Xception have been explored for diagnos-
ing cervical cancer. Inception is computationally efficient, 
uses few parameters, and has an excellent prediction accu-
racy with relatively small datasets [16]. Xception is more 
efficient than Inception, with fewer parameters, and it is 
highly accurate even with large datasets [17]. 

Pre-processing is required in cervical cancer diagnosis 
for enhancing image quality, reducing noise and improv-
ing crucial features. Pap smear images may contain noise 
due to uneven illumination, digitisation, or staining. Edge 

enhancement is required to make features like cell bound-
aries, nuclei, and cytoplasm distinct [18,19]. Wavelet de-
noising, background correction, CLAHE, and Laplacian 
sharpening have been used because wavelet denoising is 
capable of removing noise from images without blurring 
the edges. Background correction eliminates inconsisten-
cies in illumination and background variations. CLAHE is 
used in improving image contract by utilising local histo-
gram equalisation. Laplacian sharpening utilises a Lapla-
cian operator to enhance edges by the detection of regions 
with high frequency.

By analysing the Pap-smear images, this study aimed 
to detect cervical cancer. The proposed method used 
3 transfer learning approaches: simple CNN, Inception 
V3, Xception, Xception with attention, and Inception with 
attention. A novel ensemble method, which combines the 
outputs of the above models, focusing on minimising the 
error between observed values and ground-truth data, has 
been proposed. Whenever multiple predictions are avail-
able, the method will take 3 distance measures from the 
best possible solution for each class, i.e. Euclidean, Man-
hattan, and Cosine. Final predictions are calculated using 
de-fuzzified distance measures calculated by utilising the 
product rule. The authors’ main contributions of the pres-
ent study are as follows:
•	 The study proposes a new fuzzy distance-based ensem-

ble of CNNs for classifying cervical cancer using Pap- 
smear images. Five CNN models and the attention 
mechanism are utilised for feature extraction of extra 
features. The model improves accuracy by minimising 
biases, strengthens robustness to noise, provides ex-
plainable decisions (interpretability) using fuzzy logic, 
and seamlessly adapts to various CNN architectures 
without retraining (adaptability).

•	 There are 4 pre-processing algorithms: wavelet denois-
ing, CLAHE, background correction, and Laplacian 
sharpening for edge enhancement, which are used to 
create the new dataset. The proposed pre-processing 
techniques ensure that the images in the new dataset 
have higher image clarity, improved segmentation, and 
edge and contrast enhancement, leading to more ac-
curate classification of the cells, ultimately ensuring 
better diagnostic performance. 

•	 The work employs new a fuzzy distance-based aggre-
gator function that reduces the ground-truth samples 
also called the ideal solution and observed samples 
difference. The ideal solution distances in 3 spaces 
are taken into account by the proposed ensemble 
method. The approach can effectively aggregate the 
base learners’ confidence scores so that the ensemble 
performance can be enhanced. Fuzzy logic improves 
the interpretability of the decision-making model by 
providing confidence levels for predictions instead of 
fixed classifications. Distance-based weighting further 
improves reliability by giving higher weightage to pre-
dictions that are closer to the correct class.



Garima Verma, Anurag Barthwal �

e416 © Pol J Radiol 2025; 90: e414-e430

•	 The model outperforms most of the state-of-the-art 
approaches on 2 datasets, where dataset 1 is publicly 
available and dataset 2 is constructed after pre-pro-
cessing.
In the proposed work InceptionV3 was chosen because 

of its parameter savings and better performance on medi-
um-sized datasets, where its factorised convolutions cut 
down on computations without sacrificing accuracy. Xcep-
tion, on the other hand, substitutes regular convolutions 
with depth-wise separable convolutions to achieve better 
performance at fewer parameters for big datasets. In con-
trast to AlexNet, a non-deep and overfitting network, and 
ResNet, a computationally intensive network, both Incep-
tionV3 and Xception strike an ideal balance between com-
plexity and performance. Hence, they are more suitable for 
practical tasks such as cervical cancer classification. Exist-
ing work that uses sum or product rule-based aggregation 
fails where base classifiers provide contradicting outputs. 
Our fuzzy distance-based aggregator can better manage 
such conflicts, generating confidence weights based on the 
distance to the ideal output [15-17].

The remaining part of the work is described in vari-
ous sections. Existing related research work is discussed 
in Section 2, while Section 3 discusses all the methods 
and materials utilised in developing and implementing 
the proposed model, such as the dataset used, techniques 
of pre-processing, etc. Section 4 describes the proposed 
model, the complete pipeline, and the main algorithmic 
steps used to design the model. Section 5 illustrates the 
results and comparisons of findings with existing work, 
and Section 6 presents the conclusions and future scope.

Literature review

The present section discusses approaches in existing lite
rature on the classification of cervical cells, outlining the 
different methodologies proposed, their efficiency, and 
the challenges faced. CNNs are frequently used for cervi-
cal cell classification because they are capable of extract-
ing hierarchical features from images of Pap smears [20]. 
Hemalatha et al. [21] combined fuzzy logic with CNN 
to classify cervical cell images. The authors claimed that  
the integration of interpretability of fuzzy systems with 
the efficiency of CNNs improved the classification accura-
cy. De Lima et al. [22] proposed the use of Mask R-CNN, 
which is capable of instant segmentation, for cervical cell 
classification. Ali et al. [23] proposed a hybrid model by 
integrating naive Bayes (NB), random forest (RF), SVM, 
and decision tree (DT) classifiers. The risk factor data-
set of the UCI Machine Learning Repository was used 
for models training and testing. The study [24] explored 
transfer learning for classifying cervical cells, comparing 
13 pre-trained deep CNN models on the relatively small 
and imbalanced Herlev dataset, containing Pap-smear 
images. The best classification accuracy of 87.02% was 
achieved with DenseNet-201.   

The federated learning (FL) approach allows hospi-
tals to train models independently and collaboratively 
improve a global model without sharing sensitive data. 
Nasir et al. [25] developed a federated ML model with 
Blockchain for data security and IoMT for data collection. 
Reference [26] utilised a CNN-based federated learning 
framework to classify cervical cell images while ensuring 
patient data confidentiality. The approach demonstrates 
high classification accuracy in both scenarios. However, 
limitations such as high computational demands, commu-
nication overhead in FL, and reduced accuracy in non-FL 
scenarios remain challenges. The study [27] explored digi-
tal twin along with CervixNet classifier for cervical cancer 
detection, using the relatively small SIPaKMeD dataset. 
Although CervixNet demonstrates high accuracy, it has 
dataset constraints, reducing its generalisability.

An approach was presented by Xie et al. [28] to predict 
the radiation dose to be administered for cervical can-
cer radiotherapy. For prediction, beam channel genera-
tive adversarial networks (BC-GAN) are proposed, but 
the dataset used is relatively small. Mathivanan et al. [29] 
employed deep CNN models with machine learning al-
gorithms to detect cervical cancer using AlexNet, Incep-
tionV3, ResNet-101, and ResNet-152. Due to its reliance 
on only the SIPaKMeD dataset, the study has generalisa-
tion issues. The study [20] combined Vision Transformer 
(ViT) with SeNet, DenseNet169, and ResNet101 models 
for the classification of unsegmented images of cervical 
cells. The authors claim that accuracy can be improved by 
using approaches such as cervix feature fusion (CFF) and 
fuzzy feature selection. The datasets used, SIPaKMeD and 
Mendeley, are relatively small, leading to generalisation 
and overfitting issues. Study [31] investigated synthetic 
medical images created using GANs for predicting the 
reappearance of cervical cancer following radiotherapy.  
The study aims to expand dataset diversity and availability 
to help overcome the limitations of real-world medical data.

Madathil et al. [32] trained a deep learning model 
using multiple modalities like clinical records, medical 
imaging, and molecular biomarkers. ConvNeXt has been 
used for feature extraction and CerVital Predict for pre-
dicting cervical neoplasia. The study [33] combined CNN 
with transfer learning for cervical cell classification. They 
employed pre-trained models for extracting features along 
with machine learning classifiers, trained using the SIPaK-
MeD and Herleve datasets. In 2025, Hemalatha et al. [34] 
proposed a self-supervised learning method in which con-
trastive learning is used in extracting features from un-
labelled cervical cancer cell images. But self-supervised 
learning approaches are believed to be less accurate in 
comparison to supervised approaches. Another limita-
tion of these works is the use of relatively small datasets, 
which may result in lack of generalisation and overfitting. 

Wang et al. [35] proposed an AI-based system for 
detecting cervical cancer. Utilising a comprehensive real-
world dataset, ResNet-18 was used for feature extraction 
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and random forest for classification. In study [36] the 
authors developed the MaxViT architecture by substi-
tuting MBConv with ConvNeXtv2 blocks and replacing 
MLP layers with global response normalisation (GRN)-
based MLPs. The study [37] combined InceptionV3 with 
DenseNet201 to improve cervical cell cancer prediction 
accuracy. The authors used pre-processing techniques like 
augmentation, normalisation, dataset splitting, and di-
mensionality optimisation for feature selection. But these 
studies use a relatively small database and interpretability 
remains a challenge. 

Munshi [38] addressed the issue of class imbalance 
and missing data by integrating support vector machine 
(SVM) imputation for handling missing values, adaptive 
synthetic (ADASYN) sampling for class imbalance, and 
CNN that performs feature extraction. These are com-
bined within a stacked hybrid ensemble model that in-
tegrates the prediction strengths of diverse ML models.  
The study [39] addressed the challenge of missing values 
by combining the K-nearest neighbours (KNN) imputer 
with ensemble voting classifier. Muksimova et al. [40] 
developed RL-CancerNet, which blends CNNs and rein-
forcement learning to enhance diagnosis of cervical can-
cer. The proposed framework was trained and evaluated 
on the SipaKMeD and Herlev datasets. In these works, the 
proposed models are evaluated on single, relatively small 
datasets, limiting the generalisability. Study [41] proposes 
a model for classifying cervical cytology images based on 
DenseNet121 improved with Convolutional Block Atten-
tion Module (CBAM). The combination is to improve 
feature representation by highlighting informative spatial 
and channel areas of the image, thereby attaining high 
classification accuracy on the SIPaKMeD dataset. But the 
model is limited by its dependence on a single backbone 
architecture with no ensemble fusion, which could limit 
its stability in heterogeneous clinical situations. The re-
search [42] presents a model based on CNN with addi-
tional CBAM and parallel branches for enhanced cervical 
cell image feature extraction. The model was 92.82% accu-
rate on the SIPaKMeD database with enhanced attention 
to diagnostically critical locations. There was no ensemble 
learning and external validation. No clinical deployment 
process was addressed.

Research gaps

According to the literature, the following are identified as 
the key gaps in research:
•	 Although some works employed CNNs and pre-

trained deep models (e.g. ResNet, InceptionV3, 
DenseNet) to classify cervical cells, applying atten-
tion mechanisms with pre-trained models to classify 
cervical cells has not been extensively investigated. 
While more recent studies [21,35] have incorporated 
attention mechanisms such as Squeeze-and-Excitation 
(SE), CBAM, and self-attention into CNNs (ResNet, 

DenseNet) in classifying cervical cancer, they mainly 
apply attention alone or with one model. This study 
builds upon the aforementioned research by incor-
porating attention-augmented CNNs into a fuzzy en-
semble, thus enhancing interpretability and robustness 
with multiple base classifiers.

•	 Attention mechanisms can enhance feature selection 
and make deep learning models more interpretable.

•	 Single classifiers or ensemble methods such as voting 
classifiers and stacked ensembles are mostly utilised 
in research. Fuzzy distance-based aggregation is not 
applied to aggregate the predictions of more than 
a single model that might improve decision-making 
reliability.

•	 The method would deliver a strong and interpretable 
way to obtain final classification decisions.

•	 There have been various models (e.g. CervixNet, ViT-
based models) that have been trained on relatively 
small sets like SIPaKMeD and Herlev, thus restrain-
ing their generalisability [27,28].

•	 Class imbalance in cervical cancer databases is an-
other significant issue, with the propensity to cause 
biased predictions in most cases. Although some re-
search removes it by employing ADASYN or synthetic 
data augmentation, more efficient data augmenta-
tion methods and imbalance management strategies 
should be investigated [38].

•	 Most of the current deep learning models, such as 
CNNs and Vision Transformers, are black boxes, and 
thus it becomes difficult for medical professionals to 
interpret the results. Fuzzy logic-based methods pro-
vide an interpretable solution but are yet to be widely 
hybridised with deep learning models for cervical can-
cer classification.

Material and methods

Dataset

SIPaKMeD is an open-source dataset, which was used 
in the study. This dataset contains a total of 4049 single-
cell images, which were manually retrieved from 966 cell 
cluster images of Pap-smear slides. Microscopic images 
of cells are captured with the help of a CCD camera and 
an optical microscope. Normal cells, abnormal cells, and 
benign cells fall into 5 categories: dyskeratotic, metaplas-
tic, parabasal, koilocytotic, and superficial-intermediate 
(Figure 1). 
•	 A dyskeratotic cell is a squamous cell that has un-

dergone premature abnormal keratinisation within  
an individual cell or in clusters. Despite being oran-
geophilic, their cytoplasm is brilliant. 

•	 Koilocytic cells have vesicular nuclei similar to those 
of koilocytic cells. In many cases, cells with several 
nuclei are likely to be binucleated or multinucleated.  
The second category, koilocytotic cells, is mainly found in  
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mature squamous cells, both superficial and interme-
diate. They appear mostly cyanophilic, very lightly 
stained, and characterized by a large perinuclear cavity. 

•	 Metaplastic cells are either small or large parabasal-
type cells characterised by distinct cellular boundar-
ies, sometimes exhibiting eccentric nuclei and occa-
sionally possessing a substantial intracellular vacuole.  
The central staining is often light brown and contrasts 
with the marginal staining. The subsequent group, para-
basal-cells, comprises immature squamous cells and rep-
resents the smallest type of epithelial cells seen in a stan-
dard vaginal smear. The cytoplasm is often cyanophilic 
and typically features a prominent vesicular nucleus. 

•	 Parabasal cells have morphological similarities to meta-
plastic cells, making differentiation between the 2 chal-
lenging. 

•	 The last group comprises the majority of cells obtained 
in a Pap test. They often present as flattened structures 

with round, oval, or polygonal cytoplasm, generally 
eosinophilic or cyanophilic. Their nucleus is centrally 
placed and pycnotic. Their cytoplasm is large and po-
lygonal with well-defined boundaries, and the nuclear 
borders are immediately identifiable.

Pre-processing

To prepare the dataset images for better feature extraction 
and classification, various pre-processing techniques were 
utilised to improve the quality and contrast of images, and 
a new dataset was created. 

Wavelet denoising (Haar Wavelet) 

This helps to remove noise while preserving important 
features like edges and textures. It works by transform-
ing the image into different frequency components and 

Figure 1. Sample images from the dataset of each category

	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic

	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic

	 im_Metaplastic	   im_Metaplastic	 im_Metaplastic	 im_Metaplastic	 im_Metaplastic

	 im_Parabasal	 im_Parabasal	 im_Parabasal	 im_Parabasal	 im_Parabasal

	 im_Superficial-Intermediate	 im_Superficial-Intermediate	 im_Superficial-Intermediate	 im_Superficial-Intermediate	 im_Superficial-Intermediate
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filtering out high-frequency noise [43]. The whole process 
done in 3 steps:
•	 The discrete wavelet transform (DWT) is applied using 

the Haar wavelet, shown in Eq. 1

DWTI(x, y) LL,(LH,HL,HH)→ 		�  (1)

where LL  is the approximation (low-frequency compo-
nent) and LH,HL,HH  are components of high frequen-
cy, containing noise.
•	 After applying the Haar wavelet, histogram equalisation 

is applied to LL to enhance the contrast, represented 
by Eq 2. 

(I min(I))I` 255
max(I) min(I)

−
= ×

−
				    (2)

•	 Lastly, inverse DWT (IDWT) reconstruct the denoised 
image using Eq-3.

denoisedI IDWT(LL,LH,HL,HH)= 		  (3)

Contrast enhancement using CLAHE

This step is used to improvise the visibility of structures 
in an image using a contrast limited adaptive histogram 
(CLAHE) [44]. The contrast is enhanced by adjusting 
pixel intensities in small regions while preventing over-
amplification of noise using the following steps:
•	 The image is divided into N N×  tiles, N = 8.
•	 A histogram is computed for each tile and clipped at 

a threshold T to avoid excessive contrast amplification.

•	 The histogram is redistributed, and new pixel intensities 
are computed using Eq. 4.

clip
old

H
I` I

N
= +

∑
				    (4)

where clipH  is the excess part of the histogram after clip-
ping.

Background correction 

This step removes uneven lighting effects and enhances 
the cell structures. Uneven illumination in images was 
corrected by estimating the background and subtracting 
it from the original image using Eq-6. For morphological 
opening, Eq-5 (erosion followed by dilation) was used to 
extract the background.

B(x, y) MorphOpen(I,K)= 			   (5)

where B(x, y) is the estimated background, K  is the 
structuring element called kernel

Background subtraction ( correctI ) = I B− 	 (6)

Edge enhancement (Laplacian sharpening)

This step was used to sharpens the image by highlighting 
intensity transitions (edges). The Laplacian operator de-
tects edges and is eliminated from the image to enhance 
contrast. The Laplacian filter is applied using Eq-7.

2L(x, y) I(x, y)= ∇ 				    (7)

Figure 2. Flow diagram for new dataset creation

Random over sampling Random over sampling

Original data

Wavelet denoising

Background 
correction

Contrast enhancement 
using CLAHE

Edge enhancement 
(Laplacian sharpening)
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where 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
.

The enhanced image was obtained by subtracting  
the fraction α  of the Laplacian from the original image, 
represented in Eq-8.

sharpI I L= −α 				�     (8)

where α controls the sharpening strengths.
Figure 2 shows the flow diagram of creation of new 

dataset, and Figure 3 shows the sample images from the 
new dataset achieved after all steps of pre-processing.

Random oversampling

Random oversampling (ROS) is a data balancing method 
that is used in balancing the dataset if it is imbalanced 
as per defined categories. It expands the dataset by aug-
menting the minority class samples through random 
duplication of existing samples, without generating new 
data. This helps equalise the class distribution, letting the 
classifier learn patterns from both the classes more ef-
fectively. 

Algorithm-1 shows the important steps used in the 
random oversampling. Let X is the feature set, y is the 
label set, majC  represents majority class, minC represents 
minority class, and majN  and minN are samples of major-
ity and minority classes, respectively.

Figure 3. Sample images from the pre-processed dataset

	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic	 im_Dyskeratotic

	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic	 im_Koilocytotic

	 im_Metaplastic	   im_Metaplastic	 im_Metaplastic	 im_Metaplastic	 im_Metaplastic

	 im_Parabasal	 im_Parabasal	 im_Parabasal	 im_Parabasal	 im_Parabasal

	 im_Superficial-Intermediate	 im_Superficial-Intermediate	 im_Superficial-Intermediate	 im_Superficial-Intermediate	        im_Superficial-Intermediate
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Algorithm-1 (ROS)
Input – X, y , majC , minC , majN , minN
Output – Balance X, y
Begin
Read X, y

maj minif N N>  then

While(1)

random minN rand(C )=

random majif N N=  then

Exit
 Return X, y
End

Proposed framework
This section introduces the suggested method for cervi-
cal cell identification by utilising photographs from the 
dataset. The dataset was converted into a pre-processed 
version using pre-processing methods, and then the pic-
ture classes are by random oversampling. The new and 
original datasets without pre-processing are then input 
into 5 CNN models, including one basic CNN and 4 pre-

trained CNN models. Among the 4 pre-trained CNN 
models, 2 include an attention mechanism. The attention 
method enables the model to concentrate on the most 
important picture regions, namely those likely to exhibit 
significant cervical abnormalities or cancer indicators.  
It is particularly important for Pap smear imaging because 
minor alterations in cell shape may indicate malignant or 
precancerous states. The attention mechanism selectively 
emphasises the most significant areas of the picture, en-
hancing the model’s efficiency and accuracy in detecting 
malignant cells or anomalies. This study examined 5 dis-
tinct CNN architectures from various origins to provide 
accurate assessments. InceptionV3 was chosen due to 
its parameter efficiency and enhanced performance in 
relatively sized datasets where its factorised convolutions 
minimise computation without compromising accuracy. 
Xception, on the other hand, replacing normal convolu-
tions with depth-wise separable ones, performs better 
with fewer parameters in large datasets. Confidence rat-
ings are obtained from each of the trained CNNs and ag-
gregated via a fuzzy distance-based ensemble technique. 
A conclusive class is determined using 3 distinct distance 
metrics for contradictory data (i.e. disparate base classi-
fiers provide divergent predictions). Figure 4 illustrates 
the flow diagram of the model, while Figure 5 depicts the 
whole pipeline of the suggested methodology.

Simple CNN

A convolutional neural network is a deep learning model 
applied mainly to image processing and computer vision 
tasks. Inspired by the human visual system, it contains 
3 primary kinds of layers: convolutional layers for ex-
tracting features from images, pooling layers for down-
sampling to reduce spatial dimensions while preserving 
important features, and classification is done through fully 
connected layers, also known as dense layers. The parame-
ters used for designing the model are described in Table 1.

InceptionV3 

InceptionV3 is a deep CNN used to efficiently extract fea-
tures and improve classification performance. It has a few 
inception modules, each of which contains several parallel 
convolutional branches: factorised convolution, asymmet-
ric convolutions, and auxiliary classifiers.
•	 Factorised convolution – Instead of a large convolution 

k × k, we split it into:

k k 1 k k 1Co ( ) (nv x Conv C )onv ( )x× × ×=

This will reduce computation cost from 2 2O(n k )  to

2 2 2( )O n k n k O k(2n )+ =

•	 Asymmetric convolution – Instead of using the stan-
dard 3 × 3, it is replaced with

Figure 4. Flow diagram of the proposed framework

Start

Apply random oversampling

Apply CLAHE

Apply fuzzy-based ensemble

Read images
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 3 3 1 3 3 1Co ( ) (nv x Conv C )onv ( )x× × ×= .

•	 Auxiliary classifiers – During training the auxiliary 
classifier is used to provide an additional loss term 

total main auxiliaryL L 0.3L= + , where mainL  is loss of 
the main classifier, auxiliaryL  is loss of the auxiliary clas-
sifier, and 0.3 is th eweight of auxiliary loss.

Xception

Xception is a type of deep convolutional neural network 
(CNN) architecture introduced by François Chollet in 
the year 2017. It extends the inception architecture by 
fully substituting conventional convolutional layers with 
depth-wise distinct convolutions, making the model com-
putationally efficient while retaining high performance. 
Xception decomposes the standard convolution into  
2 independent processes: depth-wise convolution, which 
uses one filter per input channel, and pointwise convolu-
tion (1 × 1 conv), which combines the results of depth 
wise convolution with a 1 × 1 convolution. This helps to 
reduce the computational cost and improves learning ef-
ficiency but still allows for independent feature extraction. 
There are 3 key components of the Xception model: entry 
flow (extracts low-level features using depth-wise distinct 
convolutions), middle flow (deep feature extraction using 
repeated depth-wise distinct convolutions), and exit flow 
(final aggregation of features and classification).

The core innovation of Xception is the depth-wise dis-
tinct convolution, which replaces standard convolutions. 
For a standard convolution, the output feature map at po-
sition (i, j, k)  is computed as Eq-9

F 1 F 1 C 1
i, j,k m,n,c,k i m, j n,c k

m 0 n 0 c 0
Y W X b

− − −
+ +

= = =
= +∑ ∑ ∑ � 		 (9)

where m,n,c,kW is the filter weight, i m, j n,cx + +  is the input 
feature map, F is the kernel size, C is the input channels, 
and kb  is the bias term for output channel k.

However, in a depth-wise distinct convolution, there 
are 2 convolutions:
•	 Depth-wise convolution – each channel is filtered in-

dependently, as per Eq-10
F 1 F 1'

i, j,k m,n,c i m, j n,c
m 0 n 0

y D X
− −

+ +
= =

= ∑ ∑ � 	�  (10)

where m,n,cD  is the depth-wise filter
•	 Point-wise convolution (1 × 1 convolution) – a 1 × 1 

convolution combines the depth-wise output across 
channels, as per Eq-11

C 1 '
i, j,k c,k i, j,c

c 0
y P y

−

=
= ∑ � 		�   (11)

where c,kP  is a point-wise filter.
This reduces the number of multiplications from

 2 K(O F C )⋅ ⋅  to 2O F C( )C K⋅ + ⋅ .

Inceptionv3 and Xception with attention

The attention mechanism is used here to enhance the 
feature extraction from the model. To apply the at-
tention, the feature map is reshaped into a sequence: 
F Reshape F 49, 4( ( )8) 20′ = → . This transformation flat-
tens spatial dimensions into a sequence of 49 vectors, 
each with 2048 channels.  After this, the model applies 
multi-head self-attention to improve the representation 
of features, as per Eq-12:

T

k

QKAttention Q,K,V soft max V)
d

(
 

=   
 

       � (12)

Figure 5. Pipeline of the proposed framework
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where QQ F'W=  is the query matrix, KK F W= ′  is the 
key matrix, VV F W= ′  is the value matrix and kd is  
the scaling factor to stabilise gradients. The proposed 
model uses 8 attention heads – the attention function is 
applied 8 times in parallel and then concatenated as per 
Eq-13; this allows the model to attend to different spatial 
features simultaneously.

1 8 oMultiHead Q,K,V Concat head ,...,hea( ( d) )W= 	
		�   (13)

After this, Gaussian noise is added as a regularisation 
technique to improve generalisation, as shown in Eq-14 – 
this prevents the overfitting.

F GaussianNoise 0.25( )( )F′′ = ′ 	�  (14)

where noise is sampled from 0 to 0.25.

Ensemble model fuzzy-based distance 

The suggested ensemble technique fuzzy-based distance 
is predicated on the notion that the deviation between re-
corded and optimal solutions must be minimised. In this 
context, the recorded solution denotes the confidence 
scores produced by various models for a specific sample, 
while the ideal solution signifies a confidence score of 1, 
reflecting absolute accuracy in categorisation. To quantify 
this difference, the consensus measure using 3 distance 
metrics has been calculated – Euclidean distance, Manhat-
tan distance, and Cosine distances. These distance-based 
measures help in evaluating how close each classifier’s pre-
diction is to the ideal case, ensuring a more robust and 
reliable decision-making process. Algorithm-2 outlines all 
the steps of the proposed method. There are 2 steps used 
by the ensemble process:
•	 Direct agreement check – if all base classifiers unani-

mously predict the same class, that class is directly as-
signed as the final prediction.

•	 Fuzzy distance-based aggregation – if classifiers provide 
varying predictions, the ensemble aggregates the confi-
dence score using fuzzy weighting based on computed 
distances.
Let 1 1 2 2 m mf {(f ,c ), (f ,c ), , (f ,c )}= − − −  be the data- 

set, where each sample  n
if R∈  belongs to a class 

ic {1,2, , n}∈ −− , where n=5. Let j
ikCS (f ) represent the 

confidence score assigned to sample if  by the thk  classi-
fier for the thj class, where k 1,2,....., N= . 

For each sample if and class label j , the ensemble is 
built by computing the distance between the confidence 
scores and the ideal solution vector N

i 11 {1} == . The differ-
ence is defined as Eq-15.

j j jj
i i i iN1 2C (f ) (1 CS (f ),1 CS (f ), ,1 CS (f ))= − − −− − � (15)

Algorithm-2 Fuzzy distance-based aggregation
Input – original dataset, CATEGORIES=”im_Dyskeratotic”, 
“im_Koilocytotic”,   “im_Metaplastic”, “im_Parabasal”, 
“im_Superficial-Intermediate”

Output – performance metrics and predictions
Begin
1. **Define Function: compute_distances(feature_vec-
tor)**
   	 - Initialize ‘distances’ as an empty dictionary.
   	 - FOR each category in ‘FEATURE_VECTORS’:
     	 - Convert category vector and feature_vector to numpy 
arrays.
     	 - Compute:
       		 - Euclidean distance.
      		   - Manhattan distance.
      		   - Cosine distance (with normalization check).
     		  - �Compute ‘total_dist’ as weighted sum of these 

distances.
     		  - Store ‘total_dist’ in ‘distances’ dictionary.
   		  - RETURN ‘distances’.
2. **Define Function: get_final_prediction(distances)**
   	 - �RETURN the category with the minimum distance.
3. **Define Function: extract_features(image)**
   	 - �Simulate feature extraction (replace with ML-based 

method).
   	 - RETURN a random feature vector of length 5.
4. �**Define Function: preprocess_cervical_image(image_

path, save_path, category_name)**
   	 - Load image in grayscale mode.
   	 - IF image is NULL:

     		 - �PRINT “Error :  Image not loaded” and  
RETURN None.

   		  - �Apply **Wavelet Denoising** using Haar 
wavelet.

   		  - Apply **CLAHE (Contrast Enhancement)**.
			   - �Apply **Background Correction** using Mor-

phological Opening.
			   - �Apply **Edge Enhancement** using Laplacian 

filter.
		   	 - Save processed image with category prefix.
		   	 - Extract features from processed image.
	 - RETURN ‘final_save_path’, ‘feature_vector’.

5. **Define Function: fuzzy_aggregation(distances)**
	 - Initialize ‘final_scores’ as an empty dictionary.
	 - FOR each category in ‘distances’:
		  - �Initialize ‘combined_score’ as an array of ones 

(for 5 classes).
	 - FOR each model:
		  - Compute **fuzzy weight** using product rule:
		  - �Apply exponential transformation to sum of dis-

tances.
		  - Multiply ‘combined_score’ by fuzzy weight.
		  - �Store the category with maximum aggregated 

score.
	 - RETURN ‘final_scores’.

6. **Define Function: process_all_images()**
	 - Initialize ‘final_predictions’ as an empty dictionary.
	 - FOR each category in ‘CATEGORIES’:
		  - �Define paths for cropped images and ground 

truth storage.
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Table 1. List of parameters

Model name Parameter name Value

Simple CNN Input Shape and number of classes (224, 224, 3), 5

Optimizer and loss function Adam, Sparse Categorical Cross entropy

Metrics Accuracy

Conv2D (Layer 1), Conv2D (Layer 2), Conv2D (Layer 3) 32 filters, (3x3), ReLU, 64 filters, (3x3), ReLU, 128 filters, (3x3), 
ReLU

MaxPooling2D (Layer 1, 2, and 3) (2x2)

Flatten Layer, Dense (Fully Connected) Yes, 128 neurons, ReLU Activation

Output Layer (Dense) 5, Softmax Activation

InceptionV3 Input Shape (224, 224, 3)

Base Model Weights, Base Model Trainable Pretrained on ImageNet, False (Frozen Layers)

Gaussian Noise (1st) and Gaussian Noise (2nd) 0.25

Global Average Pooling Yes

Dense Layer (1st) 512 neurons, ReLU Activation

Batch Normalization Yes

Dropout 0.25

Output Layer (Dense) 5 neurons, Softmax Activation

Optimizer and loss function Adam (Learning Rate = 0.0001), Sparse Categorical Cross entropy

Metrics Accuracy

Xception Input Shape (224, 224, 3)

Base Model Weights, Base Model Trainable Pretrained on ImageNet, False (Frozen Layers)

Gaussian Noise (1st) and Gaussian Noise (2nd) 0.25

Global Average Pooling Yes

Dense Layer (1st) 512 neurons, ReLU Activation

Batch Normalisation Yes

Dropout 0.25

Output Layer (Dense) 5 neurons, Softmax Activation

Optimizer and loss function Adam (Learning Rate = 0.0001), Sparse Categorical Cross entropy

Metrics Accuracy

Xception with 
attention

Input Shape, Base Model Weights, Base Model Trainable (224, 224, 3), Pretrained on ImageNet, False (Frozen Layers)

Feature Map Shape (7, 7, 2048)

Reshape Layer (49, 2048)

Multi-Head Attention Heads 8

Attention Key Dimension 2048

Attention Output Reshape (7, 7, 2048)

Gaussian Noise (1st) and Gaussian Noise (2nd) 0.25

Global Average Pooling Yes

Dense Layer (1st) 512 neurons, ReLU Activation

Batch Normalisation Yes

Dropout 0.25

Output Layer (Dense) 5 neurons, Softmax Activation

Optimiser and loss function Adam (Learning Rate = 0.0001), Sparse Categorical Cross entropy

Metrics Accuracy



� Enhanced deep learning for cervical cytology

e425© Pol J Radiol 2025; 90: e414-e430

		  -Create directories if not exist.
	 - FOR each image file in cropped folder:
		  - Check if file is an image.
		  - �Call ‘preprocess_cervical_image ()’ to process the 

image.
		  - �IF processed image or feature vector is None, 

CONTINUE.	
		  - Compute distances using ‘compute_distances ()’.
		  - �Predict final category using ‘get_final_predic-

tion()’.
		  - Store prediction in ‘final_predictions’.
	 - RETURN ‘final_predictions’.
7. **Main Execution**
	 - CALL `process_all_images ()`
	 - PRINT final predictions summary.
End
The work has considered 3 distance measures; there-

fore, 3 separate ensemble values are obtained: Euclidean-
based ensemble ( Ec

j iC (f ) ), Manhattan-based ensemble  
( Ma

j iC (f ) ), and Cosine-based ensemble ( Co
j iC (f ) ). These 

values are aggregated as per Eq-16 into a single vector.
 Application of Euclidean, Manhattan, and Cosine 

distances as fuzzy aggregators draws from their comple-
mentary characteristics in handling classifier confidence 
scores:

•	 Euclidean distance quantifies the closeness in geometry 
between the predicted vector and the closest output in 
terms of total magnitude difference.

•	 Manhattan distance looks at absolute value difference 
in terms of each dimension and hence is immune to 
outliers and extreme differences.

•	 Cosine similarity encodes directional coherence be-
tween prediction vectors in terms of angular displace-
ments instead of magnitude.
The ensemble system’s utilisation of all 3 measures 

takes advantage of the multiplicity of similarity viewpoints, 
hence making the system robust to cope with discordant 
predictions and stabilising classification. The product rule 
comes into play when considering the final fuzzy score to 
aggregate such measures so that models having greater 
agreement (i.e. closer to the solution optimum) are given 
greater weight.

* Ec Ma Co
j i j i j i j iC (f ) (C (f ),C (f ),C (f ))= 	�  (16)

To integrate the information obtained from distance 
measures, the product rule in Eq-17 is applied to each 
class label

Ec Ma Co
j i j i j i j i(f ) C (f ) C (f ) C (f )ϕ = × × 	�  (17)

Model name Parameter name Value

Inception with 
attention

Input Shape, Base Model Weights, Base Model Trainable (224, 224, 3), Pre-trained on ImageNet, False (Frozen Layers)

Feature Map Shape (5, 5, 2048)

Reshape Layer (25, 2048)

Multi-Head Attention Heads 8

Attention Key Dimension 2048

Attention Output Reshape (5, 5, 2048)

Gaussian Noise (1st) and Gaussian Noise (2nd) 0.25

Global Average Pooling Yes

Dense Layer (1st) 512 neurons, ReLU Activation

Batch Normalisation Yes

Dropout 0.25

Output Layer (Dense) 5 neurons, Softmax Activation

Optimizer and loss function Adam (Learning Rate = 0.0001), Sparse Categorical Cross entropy

Metrics Accuracy

Table 2. Results with original dataset

Metric Simple CNN InceptionV3 Xception Inception with attention Xception with attention Proposed

Accuracy 0.87 0.89 0.90 0.86 0.92 0.94

Precision 0.872 0.90 0.92 0.90 0.91 0.93

Recall 0.87 0.905 0.94 0.90 0.93 0.94

F1-Score 0.866 0.87 0.93 0.87 0.92 0.923

Table 1. Cont.
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The final prediction is made based on the selection of 
the class with the minimum aggregated distance as per 
Eq-18.

i j j iŷ arg min { (f )}= ϕ 	�               (18)

where iŷ represents the predicted class for sample if .  
The product rule acts as a fuzzy measure, ensuring robust 
de-fuzzification by normalising distance values into a uni-
fied scale.

The sample example of the proposed approach by 
taking a sample if  (100 images) is presented in Figure 
6, the best distance calculated for each base classifier is 

displayed, and accordingly the fuzzy aggregated score for 
each category is calculated by the proposed method and 
then displayed. The final prediction is done from the val-
ues of aggregated scores.

Figure 7. Comparison plot of accuracy for all the models using the original 
dataset

Figure 8. Plot of recall comparison using the original dataset

Figure 9. Comparison plot of accuracy for all the models using the new 
dataset

Figure 10. Plot of recall comparison using the new dataset
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Figure 6.  Sample example and prediction using proposed method

Results and Discussions
The model was simulated in python 3.x, using a Jupyter 
notebook with the machine having a main memory of 
16 GB, GPU of 4 GB, and 8th Generation Intel Person-
al Computer (PC) [28]. An open-source dataset of Pap 
smear images was utilised to train and validate the model. 

Table 4. Performance comparison with existing studies

Study [Ref.] Model Dataset used Data balancing Accuracy Precision Recall F1-Score

[24] DenseNet-201 (Best among 13 CNNs) Herlev Dataset No 87.02% None None None

[27] CervixNet (Digital Twin Approach) SIPaKMeD Dataset No 91.30% None None None

[29] AlexNet, InceptionV3, ResNet-101, 
ResNet-152

SIPaKMeD Dataset No ~85-90% None None None

[33] CNN + Transfer Learning SIPaKMeD, Herlev No 89.50% None None None

[35] ResNet-18 + Random Forest Real-world 
dataset

No 90.50% None None None

[37] InceptionV3 + DenseNet201 SIPaKMeD, Herlev No 92.00% None None None

Proposed 
work

Simple CNN Original Dataset Yes 87% 0.872 0.87 0.866

InceptionV3 89% 0.9 0.905 0.87

Xception 90% 0.92 0.94 0.93

Inception + Attention 86% 0.9 0.9 0.87

Xception + Attention 92% 0.91 0.93 0.92

Fuzzy Aggregation 94% 0.93 0.94 0.923

Proposed 
work

Simple CNN New Dataset Yes 90% 0.923 0.917 0.92

InceptionV3 92% 0.9 0.905 0.87

Xception 95% 0.96 0.956 0.945

Inception + Attention 96% 0.96 0.95 0.94

Xception + Attention 97% 0.978 0.97 0.972

Fuzzy Aggregation 98.3% 98% 0.978 0.976

The 5 deep learning models (simple CNN, InceptionV3, 
Xception, InceptionV3 with attention, and Xception with 
attention) were employed for the study. The models were 
trained in 2 stages. At the initial stage, the 2 models were 
trained and tested on the original Pap-smear dataset, and 
performance parameters were collected. At the final stage, 
the models were trained and tested on a newly created 
dataset formed by applying 4 pre-processing methods. 
Table 1 lists all the parameter settings used at the time of 
experiment.

Evaluation of framework with original dataset

The Adam optimiser dynamically adjusts the learning rate 
during training, while the sparse categorical cross-entropy 
measures the difference between the predicted and the 
actual probabilities in the target dataset. All 5 models un-
derwent training for 20 epochs. Xception with attention 

Table 3. Results with new dataset

Metric Simple CNN InceptionV3 Xception Inception with attention Xception with attention Proposed

Accuracy 0.90 0.92 0.95 0.96 0.97 0.983

Precision 0.901 0.923 0.96 0.96 0.978 0.98

Recall 0.893 0.917 0.956 0.95 0.97 0.978

F1-Score 0.90 0.92 0.945 0.94 0.972 0.976
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outperformed as a standalone feature extractor. After that,  
the proposed model was applied, and using the fuzzy aggre-
gator method the score found to be 0.94. 80% of the original 
picture dataset was utilised in training the models, and the 
remaining 20% was used for validation. Accuracy and loss 
metrics were then generated for all the models. Simple CNN 
achieved an 87% average accuracy, Inceptionv3 achieved an 
average accuracy of 89%, Xception achieved an average ac-
curacy of 90%, Inception with attention achieved an 86% av-
erage accuracy, Xception with attention achieved 92% aver-
age accuracy, and finally the proposed model achieved 94% 
accuracy. The model-wise performance metrics are listed in 
Table 2. For cervical cytology grading, recall is most critical. 
It directly contributes to patient outcomes by making sure 
the abnormal and pre-cancerous cells do not remain unde-
tected, preventing delayed diagnosis and treatment. Figure 7  
shows the accuracy comparison plot of the models, and  
Figure 8 is the recall plot of comparison of all the methods 
with the original dataset.

Evaluation of framework with new dataset

This section describes the evaluation of the models.  
All 5 models were trained on 20 epochs. Xception out-
performed a standalone feature extractor. 80% of the new 
image dataset was utilised to train the proposed models, 
and the remaining 20% was used for validation.  Loss and 
accuracy metrics were generated for all the models. Sim-
ple CNN achieved an 90% average accuracy, Inceptionv3 
achieved an average accuracy of 92%, Xception achieved an 
average accuracy of 95%, Inception with attention achieved 
an 96% average accuracy, Xception with attention achieved 
97% average accuracy, and the proposed model achieved 
98.3% average accuracy. Figure 9 shows the plots of valida-
tion accuracy for each model, and other metrics including 
accuracy are listed in Table 3. Figure 10 is the recall plot of 
comparison of all the methods with the new dataset.

Performance comparison

Table 4 gives a comparison with previous work. The sug-
gested fuzzy distance-based aggregation model outper-
forms all the previous methods, with 98.3% accuracy, 
compared to the best literature model (~92%). It also 
has the better recall (97.8%), which is more important 
in medical diagnosis. The attention-augmented models 
(Xception + Attention, Inception + Attention) are much 
better than their base counterparts, indicating the effect 
of incorporating self-attention in feature extraction. All 
the suggested models have been validated by SIPaKMeD, 
Herlev, or small datasets with the possibility of overfitting. 
The approach presented herein was trained on a large da-
taset with high generalisation capacity. Combining vari-
ous models enhances the confidence in decision-making, 
the highest reported accuracy, recall, and F1 score for cer-
vical cancer classification.

Conclusions
This Paper proposes a comprehensive approach for cervi-
cal cancer classification from Pap smear images based on 
CNN-based architectures, pre-trained deep learning mod-
els, and attention. The 5 models employed in the methodol-
ogy are Simple CNN, InceptionV3, Xception, InceptionV3 
with Attention, and Xception with Attention, and it con-
cludes with a fuzzy distance-based aggregation function for 
overall classification. The experimental outcome indicates 
that the inclusion of the attention mechanisms greatly im-
proves the model’s performance, with Xception + attention 
having higher accuracy than the baseline model. Secondly, 
the proposed fuzzy aggregation approach results in 98.3% 
improved accuracy, which is higher than previously in the 
literature. Of the measures tested, recall was found to be 
the most critical, facilitating correct identification of cervi-
cal cancer cases and avoiding false negatives, which is very 
important in medical diagnosis. In comparison to previous 
methods, the model described herein has better general-
isability, avoiding the dataset limitations and overfitting 
problems experienced in previous studies. 

Future deployment considerations and clinical 
translation

Although the presented ensemble architecture demonstrates 
superior classification performance, actual clinical deploy-
ment in practice encounters some problems. Five atten-
tion-enhanced CNNs form the existing framework, which, 
although it enhances accuracy and robustness, does so at 
massive computational expense. This could restrict its use in 
low-resource or point-of-care environments. To counter this, 
future research will explore model compression methods, 
such as pruning, quantisation, and knowledge distillation, to 
yield efficient yet lightweight versions of the ensemble. 

Scalability is also a factor, especially in scaling the 
system to multi-centre datasets with diverse image types 
and acquisition protocols. Interoperability and standardi-
sation will be enabled through pre-processing pipelines 
and adaptive learning modules, which will be essential.

For clinical validation, we partner with clinical centres 
to implement multi-site trials using prospectively collected 
data, representative populations, and real-world heteroge-
neity. Model explainability would also be improved through 
the embedding of Grad-CAM visualisations in clinical in-
terfaces, enabling clinicians to better comprehend model 
predictions. These actions will enable regulatory clearance, 
clinician adoption, and integration into diagnostic pipelines.

Disclosures 
1. Institutional review board statement: Not applicable. 
2. Assistance with the article: None. 
3. Financial support and sponsorship: None. 
4. Conflicts of interest: None.



� Enhanced deep learning for cervical cytology

e429© Pol J Radiol 2025; 90: e414-e430

References

1.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 
Global cancer statistics 2018: GLOBOCAN estimates of incidence 
and mortality worldwide for 36 cancers in 185 countries. CA Cancer 
J Clin 2018; 68: 394-424. 

2.	Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, 
Bray F. Estimates of incidence and mortality of cervical cancer in 2018: 
a worldwide analysis. Lancet Global Health 2020; 8: e191-e203. 

3.	 Kessler TA. Cervical cancer: prevention and early detection. Semin 
Oncol Nurs 2017; 33: 172-183. 

4.	 Lozano R. Comparison of computer-assisted and manual screening 
of cervical cytology. Gynecol Oncol 2007; 104: 134-138. 

5.	 Ali MM, Ahmed K, Bui FM, Paul BK, Ibrahim SM, Quinn JM, Moni MA.  
Machine learning-based statistical analysis for early stage detection of 
cervical cancer. Comput Biol Med 2021; 139: 104985. 

6.	 Kaushik M, Joshi RC, Kushwah AS, Gupta MK, Banerjee M, Bur-
get R, Dutta MK. Cytokine gene variants and socio-demographic 
characteristics as predictors of cervical cancer: a machine learning 
approach. Comput Biol Med 2021; 134: 104559. 

7.	 Rahaman MM, Li C, Yao Y, Kulwa F, Wu X, Li X, Wang Q. DeepCer-
vix: a deep learning-based framework for the classification of cervical 
cells using hybrid deep feature fusion techniques. Comput Biol Med 
2021; 136: 104649. 

8.	 Arel I, Rose DC, Karnowski TP. Deep machine learning – a new 
frontier in artificial intelligence research [research frontier]. IEEE 
Comput Intell Mag 2010; 5: 13-18. 

9.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444. 
10.	Paul A, Pramanik R, Malakar S, Sarkar R. An ensemble of deep 

transfer learning models for handwritten music symbol recognition.  
 Neural Comput Applic 2022; 34: 10409–10427. 

11.	Banerjee A, Singh PK, Sarkar R. Fuzzy integral-based CNN classifier 
fusion for 3D skeleton action recognition. IEEE Trans Circuits Syst 
Video Technol 2021; 31: 2206-2216. 

12.	Chakraborty N, Kundu S, Paul S, Mollah AF, Basu S, Sarkar R. Lan-
guage identification from multi-lingual scene text images: a CNN 
based classifier ensemble approach. J Ambient Intell Humanized 
Comput 2021; 12: 7997-8008.

13.	Tulyakov S, Jaeger S, Govindaraju V, Doermann D. Review of clas-
sifier combination methods. Mach Learn Doc Anal Recognit 2008, 
p. 361-386.

14.	Kaur H, Sharma R, Kaur J. Comparison of deep transfer learning 
models for classification of cervical cancer from Pap smear images. 
Sci Rep 2025; 15: 3945. DOI: https://doi.org/10.1038/s41598-024-
74531-0.

15.	Bechar A, Medjoudj R, Elmir Y, Himeur Y, Amira A. Federated and 
transfer learning for cancer detection based on image analysis. Neural  
Comput Applic 2025; 37: 2239-2284.

16.	Mehedi MHK, Khandaker M, Ara S, Alam MA, Mridha MF, Aung Z. 
A lightweight deep learning method to identify different types of cer-
vical cancer. Sci Rep 2024; 14: 29446. DOI: https://doi.org/10.1038/
s41598-024-79840-y.

17.	Sambyal D, Sarwar A. Recent developments in cervical cancer dia
gnosis using deep learning on whole slide images: an overview of 
models, techniques, challenges and future directions. Micron 2023; 
173: 103520. DOI: https://doi.org/10.1016/j.micron.2023.103520.

18.	Wubineh BZ, Rusiecki A, Halawa K. Segmentation and classification 
techniques for Pap smear images in detecting cervical cancer: a sys-
tematic review. IEEE Access 2024; 12: 118195-118213.

19.	Huang Q, Zhang W, Chen Y, Chen J, Yang Z. Review of cervical 
cell segmentation. Multimedia Tools and Applications 2024. DOI: 
https://doi.org/10.1007/s11042-024-19799-0.

20.	Sarhangi HA, Beigifard D, Farmani E, Bolhasani H. Deep learning 
techniques for cervical cancer diagnosis based on pathology and col-
poscopy images. Informatics in Medicine Unlocked 2024; 47: 101503. 
DOI: https://doi.org/10.1016/j.imu.2024.101503.

21.	Hemalatha K, Vetriselvi V, Dhandapani M. CervixFuzzyFusion for 
cervical cancer cell image classification. Biomedical Signal Process-
ing and Control 2023; 85: 104920. DOI: https://doi.org/10.1016/ 
j.bspc.2023.104920. 

22.	de Lima CR, Khan SG, Shah SH, Ferri L. Mask region-based CNNs 
for cervical cancer progression diagnosis on Pap smear examinations. 
Heliyon 2023; 9: e21388. DOI: https://doi.org/10.1016/j.heliyon.2023.
e21388.

23.	Ali MS, Hossain MM, Kona MA, Nowrin KR, Islam MK. An ensemble 
classification approach for cervical cancer prediction using behavioral 
risk factors. Healthcare Analytics 2024; 5: 100324. DOI: https://doi.
org/10.1016/j.health.2024.100324.

24.	Tan SL, Selvachandran G, Ding W, Paramesran R, Kotecha K. Cervical 
cancer classification from Pap smear images using deep convolutional 
neural network models. Interdisciplinary Sciences: Computational Life 
Sciences 2024; 16: 16-38. 

25.	Nasir MU, Khalil OK, Ateeq K, Almogadwy A, Saleem B, Khan MA, 
et al. Cervical cancer prediction empowered with federated machine 
learning. Computers, Materials & Continua 2024; 79. DOI: https://doi.
org/10.32604/cmc.2024.56284.

26.	Joynab NS, Islam MN, Aliya RR, Hasan AR, Khan NI, Sarker IH. 
A federated learning aided system for classifying cervical cancer us-
ing Pap-smear images. Informatics in Medicine Unlocked 2024; 47: 
101496. DOI: https://doi.org/10.1016/j.imu.2024.101496.

27.	Sharma V, Kumar A, Sharma K. Digital twin application in women’s 
health: Cervical cancer diagnosis with CervixNet. Cogn Syst Res 2024; 
87: 101264. DOI: https://doi.org/10.1016/j.cogsys.2024.101264.

28.	Xie H, Tan T, Zhang H, Li Q. Dose prediction for cervical cancer in 
radiotherapy based on the beam channel generative adversarial net-
work. Heliyon 2024; 10. DOI: https://doi.org/10.1016/j.heliyon.2024.
e135037.

29.	Mathivanan SK, Francis D, Srinivasan S, Khatavkar V, Karthikeyan P,  
et al. Enhancing cervical cancer detection and robust classification 
through a fusion of deep learning models. Sci Rep 2024; 14: 10812. 
DOI: https://doi.org/10.1038/s41598-024-61063-w.

30.	Khowaja A, Zou B, Kui X. Enhancing cervical cancer diagnosis: Inte-
grated attention-transformer system with weakly supervised learning. 
Image and Vision Computing 2024; 149: 105193. DOI: https://doi.
org/10.1016/j.imavis.2024.105193.

31.	Kawahara D, Yoshimura H, Murakami Y, Matsuura T, Nagata Y.  
Usability of synthesized image using generative adversarial network for 
prediction model of recurrence after radiotherapy in locally advanced 
cervical cancer. Biomedical Signal Processing and Control 2024; 89: 
105762. DOI: https://doi.org/10.1016/j.bspc.2023.105762.



Garima Verma, Anurag Barthwal �

e430 © Pol J Radiol 2025; 90: e414-e430

32.	Madathil S, Dhouib M, Lelong Q, Bourassine A, Monsonego J. 
A multimodal deep learning model for cervical pre-cancers and can-
cers prediction: development and internal validation study. Comput 
Biol Med 2025; 186: 109710. DOI: https://doi.org/10.1016/j.compbi-
omed.2025.109710.

33.	Sharma AK, Nandal A, Dhaka A, Alhudhaif A, Polat K, Sharma A.  
Diagnosis of cervical cancer using CNN deep learning model 
with transfer learning approaches. Biomedical Signal Processing 
and Control 2025; 105: 107639. DOI: https://doi.org/10.1016/j.
bspc.2025.107639. 

34.	Hemalatha K, Vetriselvi V. Self-supervised learning using diverse cell 
images for cervical cancer classification. Measurement 2025; 243: 
116413. DOI: https://doi.org/10.1016/j.measurement.2024.116413.

35.	Wang J, Yu Y, Tan Y, Wan H, Zheng N, He Z, et al. Artificial in-
telligence enables precision diagnosis of cervical cytology grades 
and cervical cancer. Nat Commun 2024; 15: 4369. DOI: https://doi.
org/10.1038/s41467-024-48705-3.

36.	Pacal I. MaxCerVixT: A novel lightweight vision transformer-based 
approach for precise cervical cancer detection. Knowledge-Based 
Systems 2024; 289: 111482. DOI: https://doi.org/10.1016/j.knosys. 
2024.111482.

37.	Sharma A, Parvathi R. Enhancing Cervical Cancer Classification: 
Through a Hybrid Deep Learning Approach Integrating Dense
Net201 and InceptionV3. IEEE Access 2025. DOI: https://doi.
org/10.1109/ACCESS.2025.3527677.

38.	Munshi RM. Novel ensemble learning approach with SVM-im-
puted ADASYN features for enhanced cervical cancer prediction. 

PLoS One 2024; 19: e0296107. DOI: https://doi.org/10.1371/journal.
pone.0296107.

39.	Aljrees T. Improving prediction of cervical cancer using KNN im-
puter and multi-model ensemble learning. PLoS One 2024; 19: 
e0295632. DOI: https://doi.org/10.1371/journal.pone.0295632.

40.	Muksimova S, Umirzakova S, Kang S, Cho YI. CerviLearnNet:  
Advancing cervical cancer diagnosis with reinforcement learning- 
enhanced convolutional networks. Heliyon 2024; 10. DOI: https://
doi.org/10.1016/j.heliyon.2024.e29913.  

41.	Taghados Z, Azimifar Z, Monsefi M, Jahromi MA. CausalCervix-
Net: convolutional neural networks with causal insight (CICNN) in 
cervical cancer cell classification – leveraging deep learning models 
for enhanced diagnostic accuracy. BMC Cancer 2025; 25: 607. DOI: 
https://link.springer.com/article/10.1186/s12885-025-13926-2.

42.	Cömert Z, Efil F, Türkoğlu M. Convolutional Block Attention  
Module and Parallel Branch Architectures for Cervical Cell Classi-
fication. Int J Imaging Syst Technol 2025; 35: e70048. DOI: https://
onlinelibrary.wiley.com/doi/abs/10.1002/ima.70048.

43.	Zangana HM, Mustafa FM. Review of Hybrid Denoising Approaches 
in Face Recognition: Bridging Wavelet Transform and Deep Learn-
ing. Indonesian Journal of Computer Science 2024; 13. DOI: http://
ijcs.net/ijcs/index.php/ijcs/article/view/4209.

44.	Kaur N. Hybrid image splicing detection: Integrating CLAHE, im-
proved CNN, and SVM for digital image forensics. Expert Systems 
with Applications 2025. DOI: https://www.sciencedirect.com/science/ 
article/abs/pii/S0957417425003781.


