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Abstract
Purpose: Accurate geometrical measurements of ankle joint (AJ) X-rays are essential for planning and executing ortho
paedic procedures like alloplasty. Reliable assessment of the projection correctness of the AJ radiograms has to precede 
such measurements, and it is thus a vital step in the process. To create an artificial intelligence-based tool for automatic 
assessment of the correctness of the X-ray image projection of AJ.

Material and methods: 1062 antero-posterior and lateral AJ X-rays were categorized into correct and rotated groups 
based on the literature. The database was split with an 80 : 10 : 10 ratio for training, validation, and test sets, respec-
tively. Data analysis was conducted using 32 targeted neural networks, evaluating with binary metrics: accuracy, 
precision, recall, and F1 score.

Results: The Xception neural network yielded the best results. Accuracies of 1.0, 0.849, and 0.888 were obtained for 
the training, validation, and test sets, respectively. The test set metrics achieved by Xception were as follows: precision 
– 0.935, recall – 0.879, and F1 score – 0.906.

Conclusions: The model achieved high accuracy in recognizing the projection correctness compared to literature 
reports, which can directly result in a reduction in the workload for radiologists or orthopaedic specialists, as well 
as a reduced risk of misdiagnosis.
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Introduction
Artificial intelligence (AI) is a computer science technolo-
gy that has existed for more than 70 years [1]. From a tech-
nical point of view, it is a very broad group of digital solu-
tions aimed at mimicking human intelligence. Today, AI 
has a wide range of applications in many aspects of daily 
life. The scope of these solutions extends from self-driving 
vehicles to stock market predictions, search tools, social 
networks, and as far as aerospace engineering [2]. 

Significant advancement in AI is also observed in medi-
cine, where many tools in the AI domain are utilised [3,4]. 
Radiology, in particular, is a rich area for machine learn-
ing solutions, and the number of studies on AI in this field 
has been increasing year by year [5]. In 2015, Ronneberger 
et al. [6] published the first study on image segmentation, 
aiming to segment brain and cervical neoplasm cells on mi-
croscopic imaging examinations. The driving force behind 
the development of AI in radiology is the belief that AI can 
match physicians in diagnostic accuracy [7]. In the larger 
picture, it may help increase of the efficiency of radiology 
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units, which face a constantly growing number of patients 
requiring diagnostic evaluation [8]. Furthermore, it is em-
phasised that AI is not subject to significant human nature 
disadvantages that the radiologist may present. AI does not 
become fatigued or distracted, and emotions do not influ-
ence the accuracy of its diagnoses [7]. 

Convolutional neural networks (CNNs) are a subset 
of machine learning methods and, more broadly, AI neu-
ral networks in which the main mathematical operation is 
convolution. They are applied in a variety of tasks, but their 
primary purpose is the analysis of images or series of images.  
In medicine, CNNs are used mainly in histopathology [9] 
and radiology [10], where their primary tasks include detec-
tion, classification, or derivatives of these operations.  

The positioning of the patient during radiological exa
minations plays a crucial role in determining the diagnostic 
utility of the obtained results. Positioning errors sometimes 
result from improperly performed examinations, but most 
often are related to the patient’s condition and behaviour dur-
ing the procedure [11]. In the case of X-ray images (radio-
graphs) used to assess the presence of pathology, with some 
exceptions, at least two projections are usually required. Each 
projection is carried out in a precisely defined manner to 
encompass selected anatomical structures in their entirety 
and in well-defined geometric relationships. This allows the 
radiologist to easily and reliably identify abnormalities. On 
the other hand, an improperly taken X-ray image can lead 
to a misdiagnosis, which can have serious medical conse-
quences. For example, improper alignment of the axis of the 
area being examined in relation to the image axis can lead to 
the superimposition of anatomical structures and, as a result, 
limit the interpreter’s ability to make a correct assessment.

The aim of our project was to develop a tool to assess the 
correctness of the axis of X-ray images of the ankle joint (AJ) 
in the antero-posterior (AP) and lateral (LAT) projections 
on properly taken radiographs. This assessment is the first 
step in the imaging diagnostic path that aims to obtain the 
accurate measurements necessary to plan the treatment of 
conditions such as degenerative changes or injuries to adja-
cent bone structures in the case of the AJ.

Our solution utilises CNNs to effectively assess the cor
rectness of the analysed radiographs. To the best of the au-
thors’ knowledge, this is the first work concerning the evalu-
ation of the correctness of projection axes on standardised 
radiographs, especially in AJ imaging, according to guide-
lines and literature. The described experiments are the pre-
liminary stage of the development of an automated imaging 
diagnostic system for AJ alloplasty procedures.

Material and methods

Dataset and projection correctness determination 

For numerical experiments, a total of 1062 AJ X-rays de-
fined as AP and LAT projections from the years 2015-2022 
were used from the archives of the Department of Imaging  

Diagnostics of the University Hospital in Krakow. The above-
mentioned AP group included 528 X-rays while the LAT 
group consisted of 534 pictures. Of these radiographs,  
404 were assessed as invalid and the other 658 as valid.

The studies were randomly selected, without taking 
into account the characteristics of the patients such as 
sex, the side of the body examined, trauma history, osteo
arthritic changes, internal stabilisation with metallic ele-
ments, or external stabilisation in the form of a plaster cast 
or other type of dressing.

The data were retrieved in the form of images saved 
in Portable Network Graphics (PNG) format due to the 
lossless compression applied in this format. Additionally, 
any markings by radiology technicians and any other ele-
ments that allowed the identification of the patient were 
removed from the images as part of the complete ano-
nymisation of the data.

The projection correctness was determined based on 
Lampigiano and Kendrick [12] and the relevant literature 
containing angular measurements used for planning AJ 
alloplasty [13-16]. Four projection annotations were ap-
plied for AJ X-ray studies: AP, rotated AP (APr), LAT, and 
rotated LAT (LATr).

The true AP projection was defined as including  
the distal 1/3 of the fibula and tibia bones, the talus bone, 
and the proximal segments of the metatarsal bones. In 
this projection, the foot bones should not be rotated, and 
their anterior-medial aspects should be visible. The pro-
jection denoted APr is targeted at the distal tibiofibular 
syndesmosis (DTFS). This kind of view should be done in 
AP oblique projection with the foot tilted medially with  
an angle of 30-45 degrees and should include the distal 
1/3 of the fibula and tibia bones, the talus bone, the cal-
caneus bone, and the base of the fifth metatarsal bone. 
Importantly, the APr projection should display the entire 
joint cavity of the upper AJ, a clearly visible distal tibio-
fibular joint space, and the medial malleolus with joint 
surface shadow overlap. 

The other projection group consisted of two LAT 
projections. The LAT projection shows the distal 1/3 of  
the fibula and tibia bones, the LAT aspects of the talus 
bone, the calcaneus bone, the other tarsal bones, and the 
base of the fifth metatarsal bone. The foot should not be 
rotated in the vertical or horizontal axis, and the fibula 
bone should overlay the posterior half of the tibia bone. 
The most important difference between the standard 
LAT projection and the LATr projection is the presence 
of evident rotation in the form of the crossing of the arcs 
of the talus bone and/or the articular surface of the tibia 
bone in the shape of the letter “X”. It is worth noting that  
the slightly non-overlapping AJ joint surfaces which are 
approximately parallel or slightly shifted in the shape of 
“<” did not affect the angular measurements, and there-
fore the radiologist included them in the LAT group.  
The examples of projections assigned to the four groups 
AP, APr, LAT, and LATr are presented in Figure 1.
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Architecture and hardware

The binary classification method was applied. The input 
of the system was a digital X-ray image saved in PNG 
format, and the output was a binary decision (valid or 
invalid) based on the input X-ray image. The database 
was divided into a training, validation, and test set, ac-
cording to an 80 : 10 : 10 ratio. The model was developed 
using a training dataset (323 invalid images and 526 valid 
images) and was automatically evaluated on a validation 
dataset (40 invalid and 66 valid). The test set was used to 
assess the model performance under conditions similar to 
how the algorithm would be used in real-life applications. 
The test dataset included 66 images classified by an expert 
radiologist as valid and 41 images classified as invalid.

The model was obtained using a Python script acces-
sible from GitHub [17] that searched through all possible 
Keras Neural Network structures, selecting the best one 
and retraining the selected structure. For the assessment 
of radiograms correctness, the Xception network contain-
ing CNN was chosen. Xception is known for its depth-
wise separable convolutions, which are efficient for image 
recognition tasks. The computation time of Xception for 
training and evaluation was about 4 hours on a computer 
system equipped with a 30-core Intel Xeon Gold CPU and 
360 GB of RAM. The experiments were carried out under 
the Linux openSUSE Tumbleweed operating system dis-
tribution.

Performance evaluation

The performance of the model was evaluated using binary 
classification metrics. The metrics used included accura-
cy, precision, recall (sensitivity), and the F1 score (equa- 
tions 1-4). In each metric, the notation is understood as 
follows: TP – true positives, TN – true negatives, FP – false 
positives, FN – false negatives.

                                     (TP + TN)Accuracy  = –––––– ––––––– ––––   � (1)
                         (TP + TN + FP + FN)

                                (TP)Precision  = ––––––––   � (2)
                        (TP + FN)

                          (TP)Recall  = –––––––   � (3)
                     (TP + FN)

              (2 ∙ precision∙recall)
F1 =   ––––––––––––––––   � (4)
             (precision + recall)

Results
Thirty-two neural networks were tested. Table 1 shows the 
results of the initial training through the search of the Keras 
Neural Networks. 

The optimal modified Xception architecture, selected 
among 32 evaluated neural networks, yielded accuracies 
of 1.0, 0.849, and 0.888 for the training, validation, and 
test sets, respectively. Table 2 shows the other metrics cal-
culated for the chosen architecture and Figures 3A and 3B 
contain confusion matrices for each set. 

Discussion
To the best of our knowledge, this is the first work that 
considers the use of AI to check the correctness of the AJ 
projection defined according to the recommendations of 
the literature. A paper concerning similar problems was 
published by Mairhöfer et al. [18]. The authors described 
the quality of the AJ radiographs, based on the subjec-
tive assessment of the radiologists, describing it on a scale 
from 1 to 3, where 1 means ‘perfect’ and 3 means ‘not dia
gnostic’. They use two networks: EfficientNet-B0 – twice, 
for radiographic view recognition and quality assessment, 
and DeepLabV3 – once, for region of interest extraction. 
In our project, we tested different classification networks 
including EfficientNet-B1 (upgraded version of Efficient-
Net-B0). This solution did not show promising results, 
while Xception was our network of choice.

We suggest that, excluding university medical institu-
tions, the majority of radiology units possess hardware that 
is unable to provide sufficient power to process advanced 
multistep analysis of the submitted X-rays. Therefore, in 

Figure 1. Projections of the antero-posterior (AP), rotated AP (APr), lateral (LAT), and rotated LA (LATr) groups. A) AP projection, without a visible tibio
fibular syndesmosis gap. B) Oblique antero-posterior projection (APr), showing a clear tibiofibular syndesmosis gap and overlapping shadows of the medial 
malleolus with a straight line of the medial articular surface of the upper ankle joint. C) Two examples of correct LAT projections, with a slight horizontal 
axis deviation that does not affect angular measurements. D) Two examples of LATr, with the first image showing the crossing of the articular surface  
of the talus bone in an “X” shape, and the second image displaying significant horizontal axis rotation, creating a wide fan-shaped appearance resembling “<”

A B C D
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contrast to Mairhöfer’s work [18], in our paper we present 
one-step analysis of the projection correctness, which could 
probably be performed in more diagnostic stations, even 
older ones, and in medical centres, without additional costs. 

Another difference is that they do not discriminate 
between true AP and AP aimed at the DTFS and present 
the latter as a standard. Although there may be differences 
between countries, if it comes to a certain ‘standard’, we 
argue that each of those projections serves a different 
function, but the literature recommendations define the 
true AP projection as X-ray obtained with feet pointing 

Table 1. Results of initial training through the grid search of the Keras Neu-
ral Networks and accuracy for the validation set

No. Neural network Validation accuracy

1 Xception 0.858

2 InceptionResNetV2 0.792

3 MobileNet 0.736

4 NASNetMobile 0.642

5 EfficientNetB3
EfficientNetB4
EfficientNetB5
EfficientNetB6
EfficientNetB7

ConvNeXtXLarge
MobileNetV2

MobileNetV3Small
MobileNetV3Large

ResNet50
ResNet101
ResNet152

ResNet50V2
ResNet101V2

VGG16

0.623

6 DenseNet201 0.528

7 DenseNet169 0.406

8 InceptionV3
DenseNet121

0.396

9 EfficientNetB1
EfficientNetB2
ConvNeXtTiny

ConvNeXtSmall
ConvNeXtBase
ConvNeXtLarge
NASNetLarge
ResNet152V2

VGG19

0.377

Table 2. Results of classification metrics

Dataset Accuracy Precision Recall F1

Training 1.000 1.000 1.000 1.000

Validation 0.849 0.891 0.864 0.877

Test 0.888 0.935 0.879 0.906

forward, where the medial malleolus is not overlapping 
and the DTFS is not pointing towards an X-ray tube [12]. 
In practice, different radiology units may use slightly 
modified methods of quality assessment, whereas in our 
opinion, the literature guidelines should be applied simi-
larly everywhere. 

The advantage of our project compared to the one dis-
cussed is the three-step procedure.  The model was evalu-
ated in three stages, in which training was followed by 
validation and test, instead of performing two steps only 
(training and test). The validation procedure plays differ-
ent roles, but the most important is to prevent overfitting; 
one could state that a result of above 90% in the setting of 
the authors test-set accuracy might be due to overfitting in 
the scenario of absence of a validation procedure.

However, our research appears to be complementary. 
Evaluating the accuracy of the projection axis and, subse-
quently, its quality, could provide a significant advantage 
to radiologists when compared to either of these aspects 
alone.

Two other papers related to the assessment of the 
quality of ankle X-ray images in the literature are con-
ducted by Krönke et al. [19] and Köpnick et al. [20]. 

In Krönke’s study [19], the team uses the combination of 
two neural networks that provide spatial information about 
the AJ setting. With the use of a three-dimensional model 
generated from MRI images with different foot angular con-
figurations, the second network acquires spatial information 
about bone contours. These markers are supplied by the first 
network, which identifies them in X-ray images, enabling the 
second network to compute the pertinent parameters for AJ 
orientation. The effects of the model’s operation are tested us-
ing an artificial foot model with real human bones at specific 
angulation settings.

In contrast to our experiments, which are based on 
determining the correctness of projection orientation and 
therefore answering the question of whether the projec-
tion was done according to the state of the art, this study 
focuses mainly on providing parameters for AJ position-
ing. Based on this, the user receives information about the 
angle of AJ position in relation to the detector, without 
a clear and straightforward determination of whether the 
taken image is correct or not, which is essential for further 
work with the radiograph.

Köpnick et al. [20] conducted a study similar to that of 
Mairhöfer [18], except that the data after training were com-
pared to those obtained with a rotating phantom with known 
angular position for validation, and only one (the LAT pro-
jection) was used for testing. The similarity was the semi-
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subjective assessment of the visibility of the AJ articular space 
(divided into four classes, as opposed to Mairhöfer’s three). 
Contrary to what was presented by Mairhöfer and Köpnick, 
we believe that to assess the overall quality of a given projec-
tion, it is necessary to analyse the presence of other anatomi-
cal structures on the image to determine whether a given 
projection can be assessed as correct. 

The main difference between the above-mentioned 
experiments and ours is that we took the approach that 
the X-ray would be assessed as is, refraining from the ROI 
definition. The specific projection of the AJ image accord-
ing to the literature, as previously written, should include 
the relevant bony structures; hence, our correctness ap-
proach included the entire X-ray of the AJ.

Moreover, in our work we used X-rays of both healthy 
individuals and patients with various pathological condi-
tions such as fractures, degenerative changes, and internal 
and external stabilisation (i.e. plaster cast). None of the 
aforementioned papers states the profile of the patient 
whose X-rays were used for the experiments, and this is 
of great importance because physicians are the ultimate 

recipients of the model’s results. It is likely that once the 
patient profile was standardised, our model would yield 
better results. In future work, we believe that for more 
complex images, such as those with advanced degener-
ative changes, the use of ROI or the notification to the 
physician of the need for manual evaluation would be re-
quired. An 89% accuracy with approximately 1100 non-
standardised images is, in our opinion, a very good result.

Although there are papers concerning the role of AI 
in recognition of projection [21], we still lack research 
assessing the appropriation of each projection. Stan-
dardised, properly planned and performed X-ray imag-
ing, especially in AJ, plays a crucial role in reliable analysis 
of a wide range of pathologies. It is hard to believe, but 
even some basic projections (i.e. AP versus AP mortise) 
are sometimes hard to distinguish from each other.

Conclusions
Given the similarities between commonly used projec-
tions, our model achieved high accuracy in recognising 

Figure 3. A) Confusion matrix for the training (left) and validation (right) set. B) Confusion matrix for the test set. The numbers in rectangles represent 
the count of predictions made by our model. The right-hand side gradient bar represents a visual scale of values equal to the number of instances in  
the rectangles. The scale differs for the training, validation, and test sets

Figure 2. The architecture used for image classification is Xception, a deep convolutional neural network (CNN) architecture. The colours of the blocks 
correspond to different types of layers: blue – convolutional; violet – separable convolutional; orange – max pooling; yellow – global average pooling; and 
green – softmax [Graphics based on Westphal et al. A Machine Learning Method for Defect Detection and Visualization in Selective Laser Sintering Based on 
Convolutional Neural Networks’ with modifications. Additive Manufacturing 2021; 41. DOI: https://doi.org/10.1016/j.addma.2021.101965]
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their correctness compared to an expert. The practical 
application of such a tool can also reduce the risk of un-
der- or overdiagnosis, ultimately leading to medical error. 
This will directly result in reduced treatment costs and 
increased access to specialised care, as AJ problems are 
an increasing problem and are closely related to quality of 
life [22-24]. Machine learning tools approved by the FDA 
and recognised by the American College of Radiology are 
already being used in medicine [25]. 

Determining the correctness of the AJ projection is 
the first step in planning AJ arthroplasty. This procedure 
requires appropriate geometric measurements on radio-
graphs. To make these measurements, it is necessary to 
devote a lot of specialists’ time to the evaluation of the 
examinations. Standardisation and proper evaluation of 
the correctness of the most commonly used AJ projec-
tions will make this procedure more accessible to patients.
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