Received: 04.07.2025 Accepted: 17.08.2025 Published: 07.11.2025

http://www.polradiol.com

Letter to the Editor

Comments on "Detection of cholesteatoma recurrence by magnetic resonance imaging (DWI non-EPI sequence) — how can we minimise false results?"

Rachana Mehta¹, Ranjana Sah²

¹Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India

Dear Editor,

We read with great interest the study by Pietraszek *et al.* [1], which evaluated the diagnostic performance of non-echo-planar diffusion-weighted imaging (DWI non-EPI) in detecting recurrent cholesteatoma. This study presents a clinically meaningful dataset from 156 postoperative cases and offers valuable recommendations to reduce false findings, particularly the practical emphasis on preimaging ear canal cleaning and interval-based imaging. Additionally, the retrospective design, combined evaluation by both radiologists and otosurgeons, and focus on real-world diagnostic pitfalls add to its practical relevance. Nonetheless, several methodological limitations of this otherwise commendable study merit further attention.

First, the absence of a control arm using conventional echo-planar imaging (EPI) sequences limits the comparative specificity and generalizability. Without such a comparator group, the observed 87% sensitivity lacks contextual benchmarking, making it difficult to evaluate the true incremental utility of non-EPI protocols in settings without access to advanced magnetic resonance imaging systems [2].

Second, the study reported a notably low negative predictive value of 18.2%, but the authors did not fully explore the clinical ramifications of this finding. A negative imaging result in nearly one of the five patients may still

indicate a residual lesion, particularly mural or sub-3 mm cholesteatomas [3]. However, the authors proposed a surveillance algorithm relying on serial imaging at 1, 3, and 5 years after surgery. This approach risks the delayed diagnosis of false negatives, especially when patients are asymptomatic. The potential for irreversible ossicular erosion or labyrinthine fistula formation during this surveillance window necessitates greater caution and possibly earlier second-look exploration in high-risk cases. The inclusion of surgical thresholds based on hearing loss or persistent membrane perforation, while pragmatic, may inadvertently defer essential interventions.

Third, there is limited granularity in describing the inter-reader variability between otosurgeons and radiologists. Although discrepancies were "discussed and resolved collaboratively," kappa statistics or reproducibility metrics were not provided. Such data are critical in a field where the interpretation of subtle DWI hyperintensities can be highly subjective and influenced by post-surgical changes or prosthetic materials [4]. Given the increasing decentralization of imaging reviews [5], this omission may hinder protocol adoption in centers lacking integrated ear, nose, and throat (ENT)-radiology collaboration.

Finally, while the study suggests a decline in false positives over time due to operator experience and improved pre-scan protocols, it does not provide an opportunity to quantitatively stratify diagnostic accuracy across temporal

Correspondence address:

Ranjana Sah, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune — 411018, Maharashtra, India, e-mail: ranjanasah384@gmail.com

Authors' contribution:

A Study design · B Data collection · C Statistical analysis · D Data interpretation · E Manuscript preparation · F Literature search · G Funds collection

²Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pune, Maharashtra, India

cohorts. A subgroup analysis comparing early (2015-2018) and late (2019-2021) scan performance could objectively illustrate the learning curve, guiding resource allocation, and training in newer centers adopting DWI non-EPI imaging.

In conclusion, the authors' contribution to optimizing DWI non-EPI protocols for postoperative cholesteatoma surveillance is timely and clinically relevant. However, additional comparative data, standardization of interpretive metrics, and a cautious approach to interpret nega-

tive scans are essential to minimize missed diagnoses and improve patient outcomes.

Disclosures

- 1. Institutional review board statement: Not applicable.
- 2. Assistance with the article: None.
- 3. Financial support and sponsorship: None.
- 4. Conflicts of interest: None.

References

- Pietraszek M, Stański N, Marszał J, Karmelita-Katulska K, Bartochowska A, Balcerowiak A, et al. Detection of cholesteatoma recurrence by magnetic resonance imaging (DWI non-EPI sequence) – how can we minimise false results? Pol J Radiol 2025; 90: e318-e323. DOI: 10.5114/pjr/203991.
- Liu H, Chen Y, Zhang M, Bu H, Lin F, Chen J, et al. Feasibility of knee magnetic resonance imaging protocol using artificial intelligence-assisted iterative algorithm protocols: comparison with standard MRI protocols. Front Med (Lausanne) 2024; 11: 1480196. DOI: 10.3389/fmed.2024.1480196.
- 3. Kubota T, Ito T, Furukawa T, Matsui H, Goto T, Shinkawa C, Kakehata S. Open-type cholesteatoma is the predictive factor for residual

- disease in congenital cholesteatoma treated with TEES. Auris Nasus Larynx 2024; 51: 898-904.
- 4. Li M, Gao Q, Yu T. Kappa statistic considerations in evaluating inter-rater reliability between two raters: which, when and context matters. BMC Cancer 2023; 23: 799. DOI: 10.1186/s12885-023-11325-z.
- Winter L, Periquito J, Kolbitsch C, Pellicer-Guridi R, Nunes RG, Häuer M, et al. Open-source magnetic resonance imaging: Improving access, science, and education through global collaboration. NMR Biomed 2023; 37: e5052. DOI: 10.1002/nbm.5052.