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Abstract
Purpose: Chronic liver disease (CLD) is a significant health issue, and detection is crucial for effective treatment. This 
study aimed to develop a deep learning based convolutional neural network (DeepCNN) to differentiate CLD from 
non-CLD patients using magnetic resonance imaging (MRI) images without segmentation, enhancing diagnostic 
accuracy and supporting timely intervention.

Material and methods: A retrospective study was conducted using MRI data from 184 patients collected between 2018 
and 2024, totaling 1112 images (460 normal, 652 CLD). Various MRI sequences, including axial T1, T2, and coronal, 
were used. The images were preprocessed with resizing, augmentation, and normalization techniques. The DeepCNN 
model was trained and compared against traditional machine learning (ML) algorithms, including logistic regression, 
k-nearest neighbor, support vector machines, and random forest. Model performance was evaluated using accuracy, 
precision, recall, F1-score, and confusion matrices.

Results: The DeepCNN model achieved a 93% accuracy and an F1-score of 0.939. Precision and recall for CLD 
classification were 97% and 98%, respectively. In comparison, traditional ML algorithms performed with accura-
cies ranging from 72.31% to 83.16%, with random forest achieving the highest. The DeepCNN model significantly 
outperformed these methods, demonstrating its strength in medical image classification. Using axial-only images 
reduced accuracy to 86%, showing that coronal views contribute valuable information. Limitation of data constrained 
learning.

Conclusions: The DeepCNN model provides superior accuracy in diagnosing CLD compared to traditional ML methods, 
using MRI images without segmentation. This approach offers a practical solution for improving CLD detection 
and paves the way for future enhancements using attention mechanisms and advanced deep learning architectures.
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Introduction
The liver is the largest gland in the human body and plays 
a vital role in metabolic regulation, detoxification, im-
mune modulation, and nutrient storage [1]. Chronic liver 
disease (CLD) refers to the progressive deterioration of 
hepatic function over at least six months, involving ongo-

ing inflammation, fibrosis, and regenerative changes that 
may culminate in cirrhosis [2]. A wide range of etiological 
factors such as chronic alcohol use, viral hepatitis, autoim-
mune liver disorders, and genetic metabolic syndromes 
contribute to the development of CLD. Cirrhosis, the end 
stage of CLD, leads to structural distortion of the liver, 
vascular remodeling, and extracellular matrix accumula-
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tion, which ultimately impairs hepatic function and in-
creases the risk of complications [2]. CLD remains a major 
global health burden, especially in resource-limited set-
tings, with increasing prevalence reported in recent epi-
demiological studies [3].

Accurate diagnosis of CLD often requires radiologic 
imaging in addition to clinical and laboratory data. While 
ultrasound is a common first-line modality, magnetic reso
nance imaging (MRI) is preferred in many cases due to 
its high soft tissue contrast and radiation-free nature [4,5]. 
MRI allows for detailed anatomical and tissue characteriza-
tion and has become a cornerstone in liver imaging.

In recent years, artificial intelligence (AI), particularly 
deep learning (DL), has shown promise in enhancing 
image interpretation and disease classification in radio
logy. Many previous studies have employed DL models us-
ing computed tomography (CT) images or histopathologi-
cal data [6-16]; however, studies using MRI data especially 
without manual segmentation remain limited [17,18]. One 
of the distinguishing features of this study is the use of raw 
MRI images without any segmentation process. Instead 
of manually isolating liver regions or lesions, we propose 
a model that directly processes axial and coronal MRI se-
quences, aiming to increase practicality, reduce prepro-
cessing time, and maintain reproducibility across datasets.

In this context, the objective of our study was to de-
velop a deep convolutional neural network (DeepCNN) 
model that can classify CLD versus non-CLD cases directly 
from non-segmented MRI images. By incorporating multi-
ple MRI sequences and viewing planes, this approach seeks  
to reflect real world variability and clinical applicability, 
while also contributing to the relatively underexplored area 
of MRI-based DL for liver disease detection.

Material and methods
This retrospective study was approved by Eskişehir Osman
gazi University Non-Interventional Clinical Studies Ethics 
Committee (date: 27.02.2024, decision No. 53). A Deep-
CNN model was developed to detect CLD using MRI data. 

The dataset is composed of patient data collected between 
January 2018 and January 2024. Various techniques were 
employed to optimize model performance and adaptively 
improve the learning process.

Dataset/pre-processing

The dataset used in the study contains 184 patients in 
total. The dataset includes images of different sequences 
(axial T1 without lava contrast, axial T2 without fat sup-
pression, coronal T2 without fat suppression) in both axial 
and coronal planes. The dataset consists of 1112 images, 
of which 460 are normal and 652 are chronic liver MRI 
images. The images in the dataset were obtained from 
dynamic liver MRI examinations performed by a 3-Tesla 
(General Electric, Milwaukee, Wisconsin) MRI machine. 

The dataset consisted of 1112 MRI slices from 184 pa-
tients, including both axial and coronal views. Specifically, 
722 axial and 390 coronal images were included, and both 
imaging planes contained samples from normal and CLD 
classes. Images were input individually into the model, 
regardless of their orientation. No fusion method or ex-
plicit indication of image plane was used during training. 
This approach was chosen to evaluate the model’s ability to 
generalize across imaging planes and to reflect real-world 
variability in radiology practice. Examples of the dataset 
used are shown in Figure 1.

In order to enhance the model’s generalization capabil-
ity and mitigate overfitting, data augmentation techniques 
were applied dynamically during the training phase. First, 
all images were resized to 224224 pixels to ensure consis-
tent input dimensions for the model and to train it with 
fixed size inputs. To apply data augmentation, the images 
were randomly flipped horizontally with a 50% probabil-
ity, enabling the model to generalize better to horizontally 
symmetric data and reduce overfitting. Additionally, the 
images were randomly rotated between –10 and +10 de-
grees to make the model more robust to rotational varia-
tions. This, too, served as a form of data augmentation. 
The brightness, contrast, saturation, and hue of the images 

Figure 1. Coronal and axial images of normal/chronic liver disease (CLD) patients from the data set used

	 Normal	 CLD
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were randomly adjusted in small proportions to increase 
the model’s generalizability to different lighting condi-
tions and color variations. The images were then cropped 
to 180 180 pixels from the center, a step aimed at reduc-
ing noise at the image edges and focusing on the cetral 
region, which is often more important for the model to 
learn relevant features. Lastly, the images were converted 
into tensors for use in PyTorch.The tensor transformation 
normalized the pixel values to a range of (0,1), preparing 
the images in a format suitable for the model’s input. In 
the final step of preprocessing, additional data augmenta-
tiontechniques, such as rotation, translation, scaling,and 
brightness adjustments, were applied to further increase 
the diversity of the training dataset. These transformations 
were implemented in real time, meaning that they did not 
increase the nominal size of the dataset, which remained 
at 1112 images. However, they effectively expanded the 
diversity of the training data by generating different rep-
resentations of the same images across epochs.

Model architecture

The fundamental architecture of the model is based on 
a DeepCNN and is designed for a binary image classifi-

cation task. The architecture begins with a convolutional 
layer that processes input images and extracts basic fea-
tures, followed by multiple convolutional layers that pro-
gressively extract both low- and high-level features. These 
convolutional layers are interspersed with max pooling 
layers, which reduce the computational complexity by 
downsampling the feature maps. In the model architec-
ture, batch normalization (BN) layers are used after each 
convolutional layer to stabilize and accelerate the training 
process by normalizing the input distributions. Batch size 
(BS), on the other hand, refers to the number of samples 
processed together in a single forward and backward pass 
during training. A BS of 16 was used in this study to bal-
ance learning efficiency and computational cost. The fea-
tures extracted by the model are then fed into fully con-
nected layers to produce the final class predictions. Lastly, 
the output layer provides a probability distribution across 
the chronic and normal classes (0 or 1), facilitating the 
final classification decision.

The developed DeepCNN model, whose architecture is 
illustrated in Figure 2, is structured as follows:
•	 Initial layer: The input image, consisting of 3 chan-

nels (RGB), is processed with a 33 convolution filter to 
extract 16 feature maps. This layer is followed by BN 

Figure 2. Model structure
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(with 16 channels) and a rectified linear unit (ReLU) 
activation function, and then max pooling with a 22 
filter.

•	 Convolutional blocks: In the second stage, the input 
images pass through four convolutional layers with 
32, 64, 128, and 256 filters, respectively. Each convolu-
tional layer is followed by BN and activated using the 
ReLU function. A 22 max pooling operation is applied 
between layers to reduce the spatial dimensions. These 
layers are designed to progressively learn higher level 
features of the images.

•	 Fully connected layers: The feature maps obtained 
from the convolutional layers are flattened and fed 
into three fully connected layers. The first fully con-
nected layer maps the 25655 input vector to 512 units.  
The output is then passed through two additional fully 
connected layers with 128 and 64 units, respectively, 
each using the ReLU activation function.

•	 Output layer: The final fully connected layer with  
64 units is followed by a fully connected layer with  
2 output units for classification. The FC4 layer pro-
duces logits scores for the two classes. This repre-
sents the class probabilities predicted by the model.  
The torch.max function determines the predicted class 
by selecting the highest logits score. The class is in-
dexed by the highest scoring tensor value: if the index 
is 1, the class is labeled “Chronic Liver”; if 0, the class is 
labeled “Normal.”

Training and optimization

The Cross-Entropy Loss function was used to train the 
model. The Adam optimization algorithm was selected 
for optimization, with an initial learning rate of 0.0001.  
To enhance the model’s performance, the learning rate was 
halved every 5 epochs using learning rate scheduler. Dur-
ing the training process, the best model weights were pre-
served based on the highest accuracy and lowest validation 
loss. Additionally, the learning rate was increased by 10% 
when the validation accuracy improved, and decreased by 
10% when the validation loss was reduced. A cross-entro-
py loss function was employed to minimize classification  
errors during training. To accelerate training and make 
it more efficient, Adam was chosen as the optimizer, as 
it uses adaptive learning rate methods to maintain a sta-
ble learning process. At different stages of training, the 
model’s learning rate was dynamically adjusted to ensure 
both fast and stable learning. Furthermore, the model’s 
performance was continuously monitored on the valida-
tion dataset, and early stopping criteria were applied to 
prevent overfitting.

Model evaluation

The performance of the model was evaluated with metrics 
such as accuracy, precision, recall, and F1-score. 

Accuracy: The correct prediction rate of the model 
was calculated.

Precision: Measures how much of the images classi-
fied as chronic are actually chronic. High precision indi-
cates that the model has a low false positive rate.

                                             True positives (TP)
Precision =  ––––––––––––– ––––––––––– ––––––––––––––––   
                        True positives (TP) + False positives (FP)

Recall: Measures how much of the truly chronic ima
ges are correctly classified. High sensitivity indicates that 
the model has a low false negative rate.

                                          True positives (TP)
Recall =  ––––––––––––––– ––––––––––– ––––––––––––––––
                   True positives (TP) + False negatives (FN)

F1-score: Calculated as the harmonic mean of sensi-
tivity and recall.

                            Precision × RecallF1score = 2 ×       –––––––––––––––
                            Precision + Recall

Test accuracy: The ratio of correctly classified samples 
to total test samples in the test dataset.

                                    Number of correct predictionsTest accuracy = ––––––––––– ––––––––––– –––––––––––  × 100
                                  Total number of test examples

Confusion matrix (CM): True positive (TP): correctly 
predicted instances for Class 1. True negative (TN): cor-
rectly predicted instances for class 0. False positive (FP): 
instances incorrectly predicted as class 1 when they were 
class 0. False negative (FN): instances incorrectly predic
ted as class 0 when they were class 1.

               TN FPCM =  ––– –––   
               FN TP

Disease prediction using machine learning algorithms

Traditional machine learning (ML) algorithms are widely 
used for disease diagnosis and detection. Classification 
algorithms such as logistic regression, k-nearest neighbor 
(KNN), support vector machines (SVM), and random 
forest have been effectively employed in disease diagnosis 
[19-22]. To compare with our developed DeepCNN mo
del, we applied logistic regression, KNN, SVM, and ran-
dom forest methods using our database.

Training the model

During the training process, the dataset was divided into 
training, validation, and test sets. Initially, all patient  
images were categorized into two main groups: normal 
and CLD. These patient-level groups were then randomly 
split into training (87.3%), validation (5.0%), and test 
(7.7%) sets within the program. Images designated as test 
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data were excluded from the training and validation phases 
to ensure that the model’s performance could be evaluated 
on unseen data. This approach prevents the model from 
memorizing the test data and allows for a more accurate 
and realistic assessment of its performance. Out of a total 
dataset of 1112 images, 86 were set aside as test data, 
and the model’s performance was analyzed using various 
evaluation metrics based on this test set.

To avoid data leakage, we ensured that images from 
the same patient were included in only one of the training, 
validation, or test sets. This was implemented by splitting 
the dataset at the patient (folder) level, not at the image 
level. Thus, although both axial and coronal images were 

used, they were grouped per patient, and no patient’s data 
appeared in multiple subsets.

Explainability analysis

To interpret the model’s decision-making process, we  
applied gradient-weighted class activation mapping 
(Grad-CAM) to visualize the discriminative regions 
used by the DeepCNN model during prediction [23].  
Grad-CAM is a widely used explainability technique 
that generates visual heatmaps highlighting the areas 
of an image that most influence a model’s prediction.  
It works by computing the gradient of the predicted class 

CLD – chronic liver disease, Grad-CAM – gradient-weighted class activation mapping, Org. – original

Figure 3. Grad-CAM visualizations on coronal and axial images in classification scenarios
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score with respect to the feature maps of a chosen con-
volutional layer, then weighting and combining these 
maps to produce a coarse localization map. In our case, 
Grad-CAM was applied to the final convolutional layer 
(Conv4), enabling us to observe where the model was 
focusing during classification. Representative examples 
of real CLD and normal cases are shown in Figure 3 to 
illustrate the behavior of the model.

Results

Patient data

Of the MRIs obtained from the dataset, 90 were from  
individuals with normal livers (45 males, 45 females) 
and 94 were from CLD patients (50 males, 44 females).  
The mean age of the patients was 53 ± 14.63 years for  
the entire group, 44.07 ± 12.55 years for the normal liver 
group, and 61.55 ± 11.06 years for the CLD group. The da-
taset consisted of 1112 images, of which 460 were normal 
liver images and 652 were chronic liver images.

Evaluation of the model

When the metrics are analyzed, according to the support 
criteria, there are 39 examples for class 0 (Normal) and  
47 examples for class 1 (Chronic Liver). Of the model’s 
positive predictions for class 1 (Chronic Liver), 90.2% 
are considered correct, indicating a high accuracy in the 
model’s positive predictions. For class 1, 97.9% of the true 
positive samples were correctly predicted, showing that 
the model accurately predicted the majority of the posi-
tive class. The weighted average and macro average met-
rics reflect the model’s performance across both classes, 
and both measures show similar results, suggesting that  
the model provides balanced performance for both classes 
without bias. The model’s F1-score is 0.939, and its over-
all accuracy is 93%, meaning that 93% of all predictions 
were correctly classified (Table 1). All probabilistic outputs  
of the model on the test data are shown in Figure 4, and 
examples of patient images are provided in Figure 5. 

A comparative experiment without data augmentation 
resulted in a lower test accuracy of approximately 87%, 
confirming that augmentation contributed positively to 
the model’s performance.
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e l
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el 

Confusion matrix 

Predicted label

Table 1. Classification report

Precision Recall F1-score Support

0 0.97 0.87 0.92 39

1 0.90 0.98 0.94 47

Accuracy 0.93 86

Macro avg 0.94 0.93 0.93 86

Weighted avg 0.93 0.93 0.93 86

avg – average Figure 4. Confusion matrix
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To better understand the model’s decision-making 
process, Grad-CAM visualizations are presented in  
Figure 3. Grad-CAM is an explainability technique that 
highlights the regions within an image that most influ-
ence the model’s prediction by combining the final con-
volutional layer’s feature maps with the corresponding 
gradients. Across both axial and coronal views, and for 
both cirrhotic and normal cases, the model was observed 
to focus primarily on anatomically relevant regions, 
particularly within or near the liver parenchyma. While  
minor activations outside the liver were occasionally 
present, these did not have a significant impact on model 
performance. Considering that segmentation is a time-
intensive and expertise-dependent task, the ability of  
the model to extract meaningful features from unseg-
mented raw images enhances its practicality and general-
izability in clinical applications.

Comparison of the model with machine learning 
algorithms

Logistic regression, KNN, SVM, and random forest 
(RF) ML methods were applied to our dataset, and  
the test accuracy values were obtained and are presented 
in Table 2.

Discussion
The model developed in our study demonstrates high 

precision and recall values for both classes, with a par-
ticularly notable ability to correctly identify 98% of CLD 
cases, indicating that the model is highly effective in de-
tecting the disease. Although there was a slight differ-
ence in effectiveness between the two classes, this did not 
negatively impact the overall performance of the model.  
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CLD – chronic liver disease
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Figure 5. Axial and coronal model test prediction outputs 
[The MRI dataset used in this study is not publicly available due to privacy concerns but can be requested from the corresponding author under reasona-
ble conditions.]

The high F1-score further confirms that the model main-
tains a balanced performance in terms of both precision 
and recall.

The model’s performance in classifying CLD and nor-
mal liver is remarkable when compared to other recent 
studies in the literature. The overall accuracy of this model 
is 93%, and the F1-score ranges between 92% and 94% 
across classes. This positions the model as a strong per-
former, particularly in complex datasets where both axial 
and coronal images are used together. While some other 
studies have reported higher accuracy rates, they generally 
focus on histopathological images or datasets that exclu-
sively target liver cancer [24]. For instance, a study by Yu 
Sub Sung et al. [25] achieved 95% accuracy in the classifi-
cation of liver diseases. However, that study focused spe-
cifically on liver cancer classification, optimizing the model 
for specific cancer types. In contrast, our study directly ad-
dresses CLD diagnosis and uniquely combines axial and 
coronal images, contributing significantly to CLD identifi-
cation – a less explored area in the literature.

Additionally, a study published by Chen et al. [26] re-
ported a 95.27% accuracy rate on histopathologic images 
using a  Squeeze-and-Excitation Network-based DL model. 
This high success rate in liver cancer classification was 
achieved by extracting visual features through the model’s 
attention mechanism. However, the dataset in that study 
was largely limited to histopathologic images and did not 
incorporate data from different perspectives, such as axial 
or coronal images. The advantage of our model lies in its 
ability to integrate information from multiple imaging 
techniques, offering a broader application, especially in 

Table 2. Machine learning test accuracy outputs

Logistic regression 78.24%

KNN 72.31%

SVM 80.23%

RF 83.16%
KNN – k-nearest neighbor, RF – random forest, SVM – support vector machines
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diagnosing complex diseases such as CLD. While some 
models in the literature achieve higher accuracy rates, this 
is often due to the specific type of data used or the narrow 
focus of the study. Our model, by contrast, stands out by 
effectively leveraging multiple data sources to target a spe-
cific disease.

It should also be noted that most studies in the lite
rature utilize more limited types of data. The use of im-
ages from different viewing angles – axial and coronal 
planes – in this study may enhance the model’s generali
zability across diverse data, though it may also increase  
the complexity of the learning process and, in turn, re-
duce performance. For this reason, many studies opt to 
use images from a single plane, most commonly axial.  
In this study, the impact of combining different planes on 
the learning process was also investigated [18,27].

In addition to DL models, ML models play a major 
role in the healthcare industry for disease prediction using 
various types of data from medical databases. Research-
ers around the world who use ML models to strategically 
improve medical diagnosis are achieving promising results. 
However, traditional ML methods have their limitations. 
Nilofer et al. [28] used SVM and RF methods to classify 
CLD, achieving approximately 85% accuracy. However,  
the feature engineering methods used in their study were 
time-consuming and error-prone, as they required man-
ual processing of the data. Similarly, Ghosh et al. [29] 
employed ML algorithms such as decision tree and naive 
Bayes for CLD classification, but their accuracy rates re-
mained in the 80-88% range.

In this study, ML methods were also applied to the same 
dataset, achieving accuracy rates ranging from 72.31%  
to 83.16% for different methods. This demonstrates that 
the DeepCNN-based model developed here provides 
more accurate results, aligning with findings from the lite
rature. Compared to these results, the DeepCNN-based 
model’s accuracy rate of 93% shows significant progress in 
this field. DL has the capacity to learn more complex data 
structures and features, allowing for more effective feature 
extraction from intricate data, which in turn enables higher 
accuracy rates in disease diagnosis. DeepCNN networks 
excel at extracting the core features of the data while also 
discovering deeper and more meaningful patterns in the 
classification process.

DeepCNN outperforms traditional ML methods 
due to its capacity to automatically extract features and 
its ability to learn complex relationships in image data. 
This is particularly critical in diagnosing complex diseases 
such as CLD. The superior performance of DL methods 
on highly complex datasets reduces the need for manual 
feature engineering and yields more generalizable results.

One of the challenges in using both axial and coro-
nal MRI data lies in their different anatomical orienta-
tions. However, our findings indicate that DL models can 
effectively extract meaningful patterns from both planes.  
The use of coronal images, although fewer in number, sig-

nificantly enhanced model performance, supporting the 
inclusion of multi-view data in future diagnostic models.

The evaluation of the methodology presented in our 
study, based on the aforementioned criteria, shows that it 
provides an effective solution for the early diagnosis and 
accurate classification of CLDs, and demonstrates the ap-
plicability of DL techniques in medical image analysis. 
The DeepCNNs used in this study played a key role in 
enhancing model performance. However, there are several 
areas where the model can be further improved. Trans-
former-based models and multi-head attention mecha-
nisms could enhance performance by enabling the model 
to better capture important features. Data augmentation 
techniques could address class imbalances and prevent 
overfitting. Additionally, local attention mechanisms may 
help the model better focus on critical regions. Finally,  
ensembling methods and combining different models 
could further improve overall performance. These im-
provements have the potential to increase the model’s  
accuracy and its effectiveness in clinical applications.

Grad-CAM analysis provided further validation for 
the segmentation-free approach, showing that the model 
was capable of attending to liver-relevant regions without 
requiring manual delineation. This enhances the interpret-
ability and clinical trustworthiness of the model.

Conclusions
This study demonstrates the feasibility and effectiveness 
of using a DeepCNN for the classification of CLD using 
non-segmented MRI data. The proposed model achieved 
high accuracy, precision, and F1-scores, significantly out-
performing traditional ML algorithms. A key contribution 
of this work lies in its use of raw MRI images without any 
manual segmentation, thereby enhancing the model’s prac-
ticality and generalizability. The automatic extraction and 
learning of features from raw data greatly reduce the need 
for manual intervention, enabling the development of more 
efficient and scalable diagnostic tools. This segment-free 
approach reduces reliance on time-consuming preprocess-
ing steps, facilitating faster deployment in clinical settings 
and allowing for easier scalability across different imaging 
centers. Additionally, the use of different images from axial 
and coronal series without segmentation is crucial for the 
practical applicability of this DL method in clinical settings. 
While the results are promising, future studies should focus 
on multi-center validation, inclusion of clinical metadata, 
and the integration of advanced DL architectures such as 
attention mechanisms or transformer-based models. Addi-
tionally, explainable AI tools may further improve the inter-
pretability of results, strengthening the model’s acceptability 
in clinical practice.In conclusion, this study contributes to 
the growing body of literature supporting DL in liver dis-
ease diagnosis and introduces a practical, segmentation-
free approach that may serve as a foundation for more ad-
vanced, real-world AI applications in radiology.
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