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Abstract

Purpose: The aim of this study was to characterize the distribution of coronary plaque burden and gender differences
in the estimated age of coronary artery calcium (CAC) initiation in patients with moderate or low probability of
coronary artery disease using cardiac computed tomography imaging.

Material and methods: CAC was measured using the Agatston method. The patients were categorized into risk cat-
egories based on CAC score (CACs) and based on the number of involved coronary vessels. We investigated CAC
distribution and plaque burden throughout the coronary vasculature in both sexes. Furthermore, we calculated the
calcification initiation in each main coronary artery territory, assuming that average annual CACs progression is
25% per year.

Results: Among the 937 affected vessels, calcifications were most prevalent in the left anterior descending artery
(LAD), with a higher plaque burden ratio. Among patients with a low CAC burden, the LAD was the most frequently
involved vessel. Analysis of the estimated age of CAC initiation reveals that calcification begins to develop earlier in
the LAD than in other coronary territories in both sexes. Involvement of the second coronary artery territory after
one-vessel disease can be expected after a median of 4.5 years (range 2.2-8), with no significant difference between
men and women.

Conclusions: Calcified plaque was most commonly identified in the LAD. CAC occurs earlier in the LAD than in other
coronary arteries. The particular susceptibility to calcification of LAD is not related to gender.

Key words: computed tomography, coronary atherosclerosis, left anterior descending coronary artery, vascular age,
plaque distribution.

some arteries or even specific areas within them are more
prone to developing lesions. The nonrandom distribution
There is no single mechanism responsible for atheroscle-  of plaque in the vasculature is mainly restricted to the “risk
rotic vascular disease, and the etiology is apparently multi- ~ points,” with a complex interplay between hemodynamic
factorial. Although risk factors are systemic in nature, forces and endothelial responses.
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Coronary artery calcium (CAC) derived from non-
contrast cardiac computed tomography (CT) provides
a measure of plaque distribution and burden. The overall
burden of coronary atherosclerosis reflects the combined
impact of genetic predisposition, environmental factors,
lifestyle, and the presence of comorbidities, including
novel risk factors [1,2].

The moment of conversion from zero to positive CAC
is difficult to capture but important for prognosis and
treatment [3]. Once this conversion occurs, progression
becomes exponential and inevitable [4]. This is mainly
because modification of cardiovascular risk factors has
a limited impact on the progression of CAC [5]. Conse-
quently, each patient tends to remain at the same CAC
score (CACs) percentile over time [1,4,6,7]. On average,
it takes 10 to 15 years for CACs of 1 Agatston unit to in-
crease to 100 [6]. One prospective study showed that in
apparently healthy participants with positive CAC at base-
line, the CACs roughly doubled over a 5-year follow-up [8].
Additionally, the Multi-Ethnic Study of Atherosclero-
sis (MESA), involving 5,756 participants, revealed that
the CACs tends to increase about 20% to 25% annually [1].
Hence, based on a current CACs and age, it is possible
to estimate the age at which the CACs was 0.1, which is
related to the concept of arterial “age,” namely the age of
the initiation of calcification [9].

Many research studies have found that coronary
atherosclerosis is more commonly present in the left
coronary artery, specifically in the left anterior descend-
ing artery (LAD), than in the right coronary artery (RCA)
[10,11].

We examined the gender-related distribution of cal-
cium deposits and plaque burden in the coronary vas-
culature. Additionally, we determined the patient’s age
at which the CACs was at most 0.1 per vessel, suggest-
ing that CAC first developed in the LAD. In patients with
multi-vessel disease, we estimated the time to the appear-
ance of calcification in the second coronary artery site.

Material and methods

Study population

This study was a retrospective registry of individuals who
underwent CAC scoring and coronary computed to-
mography angiography as a routine diagnostic pro-
cedure. Therefore, the Bioethics Committee granted
an exemption from ethics approval for this study.
The study involved 764 consecutive individuals with
intermediate or low probability of chronic coronary
syndrome from January 2023 to December 2023. Pa-
tients with prior cardiovascular disease were excluded,
including those with prior myocardial infarction, per-
cutaneous coronary intervention, coronary bypass sur-
gery, or cardiovascular implantable electronic devices.
Additionally, patients with chronic kidney disease showing

a mild reduction in estimated glomerular filtration
rate and those with severe coronary artery calcification
(a calcium score greater than 600) were also excluded.
Patients with a CACs of 0.1 AU or higher were classified
as having a positive CACs. According to the total CACs
using the modified CAC Data and Reporting System
(CAC-DRS), patients were divided into three risk
groups: mildly increased risk (A1 with CACs from 0.1 to
99), moderately increased risk (A2 with CACs from 100
to 299), and severely increased risk (A3 with CACs of
300 or higher) [12]. Patients were further stratified into
four groups (N1 to N4) based on the number of affected
coronary territories, namely LAD, RCA, left circumflex
branch (LCx), and left main (LM). Additionally, we ana-
lyzed the distribution of CAC in the A1/N1 subgroup
based on CAC-DRS.

(Timage acquisition for CACs

Patients were scanned in the supine position during
a single breath-hold using a dual-source CT scan-
ner (SOMATOM Definition Flash, Siemens Health-
ineers, Forchheim, Germany). Noncontrast CT scans
were performed to evaluate CACs using standardized
parameters. Patients with a heart rate above 70 beats
per minute received metoprolol 2.5-5 mg intra-
venously. The presence of a lesion larger than 1 mm?
and a peak intensity greater than 130 Hounsfield
units was automatically identified and color-coded by
the software (Syngo.via). CACs were quantified using
the Agatston method [13]. In addition, we ana-
lyzed the volume of calcification plaque in mm?
and the equivalent mass of calcium hydroxyapatite
(Ca-HA) in milligrams, automatically calculated
by Syngo.via software. To calculate calcium mass,
a scanner-specific calibration factor was used. Loca-
tion of calcification plaque volume, equivalent Ca-HA,
and CACs in CT images were determined separately
for LAD, RCA, LCx, and LM. The total CACs included
the cumulative count across the four main coronary
territories. Plaque burden ratio was calculated as indi-
vidual vessel CACs divided by total CACs (vessel/total
CACs).

Statistical analysis

All categorical variables are presented as absolute or rela-
tive frequencies. Comparisons between the groups were
performed via the y? test and Fisher’s exact test. Con-
tinuous data are presented as median and interquartile
range or mean and standard deviation, depending on
the distribution. The value of p < 0.05 was deemed statisti-
cally significant. Statistical analysis was performed using
TIBCO Software Inc. (2017), Statistica, version 13.

To calculate the initial age of atherosclerosis plaque,
the appropriate formula was used (Supplementary
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material, Figure S1). This formula, analogous to a continu-
ous compound interest equation, was solved for the time
variable (f). The following assumptions were applied: con-
stant and linear atherosclerosis plaque increase with a rate
of 25% per year and CACs of 0.1 as a minimum detectable
by the imaging method.

Initiation of coronary artery calcification and its distribution

Results

The evaluated population consisted of 764 consecutive
Caucasian patients, with a median age of 65 years (58-70).
Among these patients, 443 had calcified coronary plaques
(58%) — nearly three-quarters of the men (70.6%) and

Table 1. Demographic data, plaque distribution, and plaque burden within the study group and subgroups categorized by risk level and the number
of diseased vessels (overall and by sex)

‘ (e Female Male ‘ p-value
N=443 n=304 n=139
Age median (IQR), years 65 (58-70) 66 (60-70) 62 (54-68) <0.001
Total CACburden
Total CACs, AU 54 (18-152) 50 (13-149) 61(21-162) 0.2
CAC volume median (IQR), mm? 54 (19-145) 48 (16-144) 63 (24-146) 0.082
CAC equivalent mass median (IQR), mg 10 (3-28) 9(3-27) 0.15
Coronary artery calcification distribution and CACs burden by vascular territory
LAD, n (%) 397 (90) 269 (88) 128(92) 0.2
LAD median CACs (IQR), AU 35(11-95) 34(10-98) 38(13-82) >0.9
LAD volume median (IQR), mm? 35(13-83) 41(14-81) 0.7
LAD equivalent mass median (IQR), mg 6(2-16) 6(2-16) 7(2-14) 0.9
LAD CAC vessel/total CACs, (%) 75 (42-100) 80 (48-100) 0.007
RCA, n (%) 228(51) 147 (48) 81(58)
RCA median CAGs (IQR), AU 19 (5-56) 19 (4-52) 21(7-86) 0.5
RCA volume median (IQR), mm? 23 (7-56) 21(6-55) 27 (9-77) 0.3
RCA equivalent mass median (IQR), mg 4(1-10) 4(1-9) 0.4
RCA CACvessel/total CACs, % 28 (10-63) 29 (10-63) 25 (10-65) 0.7
LCx, n (%) 215 (49) 142 (47) 73 (53) 03
LCx median CAGs (IQR), AU 17 (7-40) 16 (6-44) 19(7-38) 0.9
LCx equivalent mass median (IQR), mg 29(1.0-74) | 27(1.0-8.1) | 3.1(1.2-6.4) 0.9
LCx CAC vessel/total CAGs, (%) 18 (6-38) 20 (6-42) 16 (5-34) 0.2
LM, n (%) 97 (22) 57(19) 40(29) 0.7
LM median CACs (IQR), AU 17 (4-39) 17 (5-37) 18 (3-41) 0.8
LM volume median (IQR), mm? 18 (6-35) 18 (6-33) 19 (6-35) 0.9
LM equivalent mass median (IQR), mg 3.0(1.0-64) | 3.0(1.0-5.9) | 3.1(0.8-6.8) 0.9
LM CAC vessel/total CACs, (%) 20 (5-48) 15 (6-39) 26 (5-49) 0.6
Groups according to risk category, n (%)
A1 287 (65) 202 (66) 85(61) 0.13
A2 105 (24) 64 (21) 41(29)
A3 51(12) 38(13) 13(9.4)
Groups according to number of diseased vessels, n (%)
N1 145(33) 107 (35) 38(27) 0.006
N2 136 (31) 98 (32) 38(27)
N3 128(29) 84 (28) 44 (32)
N4 34(7.7) 15(4.9) 19(14)

CACs — coronary artery calcium score, CAD — coronary artery diseases, IQR — interquartile range, LAD — left anterior descending artery, LCx — left circumflex branch, LM — left main, RCA — right
coronary artery, risk categories: A10.1-99, A2 100-299 and A3 > 300, N/n — number of diseased vessels
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Figure 1. Distribution of calcifications in coronary artery territories —
analyzed per vessel. The most frequently affected artery was the left ante-
rior descending artery (LAD), followed by the right coronary artery (RCA),
circumflex branch (Cx), and left main (LM)

half of the women (53.6%). This difference was statis-
tically significant (p < 0.001). Patients with positive
CACs were older than those without calcifications, with
a median age of 65 years (range 58-70) compared to
56 years (range 49-63), respectively (p < 0.001). Women
with positive CACs were older than men, with a median
age of 66 years (range 60-70) compared to 62 years
(range 54-68) (p < 0.0001). There were no significant
differences in plaque distribution and plaque burden
between men and women, except for a higher LAD
artery median percentage of vessel/total CACs: 80% (range
48-100) for women versus 63% (range 35-98) for men
(p < 0.007).
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Figure 2. Distribution of coronary artery calcifications in the 3 risk
categories. Groups A1, A2, and A3 represent patients with CAC scores
> 0.1-99, 100-299, and = 300, respectively. The most frequently
affected artery in each group was the left anterior descending artery (LAD).
CAC— coronary artery calcium, RCA — right coronary artery, Cx — circumflex
branch, LM — left main

Additionally, men were more likely to have multi-
vessel disease (p < 0.006). Detailed demographic data,
plaque distribution, and plaque burden per patient level
(overall and by sex) are presented in Table 1.

The number of defined diseased coronary territories
analyzed per vessel was 937. Calcified plaque was most
commonly identified in the LAD (397, 42.4%), followed by
the RCA (228, 24.3%), the LCx (215, 22.9%), and the LM
(97,10.4%) (p < 0.0001) (Figure 1).

Table 2 presents the overall and sex-specific plaque
distribution and median CACs per vessel for 937 diseased
vessels. There was no difference in the distribution of dis-
eased vessels or median CACs between women and men.
As expected, the median CACs were highest in the LAD

Table 2. Distribution of diseased vessels and median CACs per diseased vessel (overall and by sex). There was no difference in the distribution of diseased
vessels and median CACs between women and men. As expected, the median CACs were highest in the LAD compared to other coronary territories in both
women and men

Factor Overall Female Male ‘ p-value
N=937 EE) n=322

LAD, n (%) 397 (42.4) 269 (43.7) 128(39.8)

RCA, n (%) 228(243) 147 (23.9) 81(25.2) 04

LCx, n (%) 215(22.9) 142 (23.1) 73(22.7)

LM, n (%) 97 (10.4) 57(9.3) 40 (12.4)

Total median CAGs, AU (IQR) 22 (6-63) 22 (6-65) 22(7-61) >0.9

LAD median CAGs, AU (IQR) 35(11-95) 34(10-98) 38(13-82) >09

RCA median CAGs, AU (IQR) 19 (5-56) 19 (4-52) 21(7-86) 0.5

LCx median CAGs, AU (IQR) 16 (5-41) 16 (4-44) 16 (6-34) 0.7

LM median CAGs, AU (IQR) 17 (4-39) 17 (5-37) 18 (3-41) 0.8

(CACs — coronary artery calcium score, IQR — interquartile range, LAD — left anterior descending artery, LCx — left circumflex branch, LM — left main, RCA — right coronary artery
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Table 3. Estimated onset age of coronary artery calcification across the four coronary territories overall and for both sexes. The starting age was defined as
the estimated age when coronary calcification was at most 0.1 per vessel level

Starting age

LAD median year (IQR) 4 42 39 <0.001
(34-48) (37-50) (30-47)

RCA median year (IQR) 45 46 43 0.028
(38-53) (40-53) (35-51)

LCx median year (IQR) 47 47 45 0.067
(40-53) (41-54) (37-53)

LM median year (IQR) 47 48 43 0.2
(40-55) (42-56) (38-54)

IQR — interquartile range, LAD — left anterior descending artery, LCx — left circumflex branch, LM — left main, RCA — right coronary artery

compared to other coronary territories in both women
and men.

The distribution of coronary artery calcifications dif-
fers statistically significantly (p = 0.001) among the 3 risk
categories. The low-risk group included 287 patients
(group Al). Among them, 243 patients (85%) had LAD
calcification (Figure 2).

Similarly, among the 145 patients with single-vessel
disease, 111 (77%) showed LAD involvement. Likewise,
in the subset of 137 A1IN1 patients, the LAD was the most
frequently affected artery (n = 103, 75%).

Assuming that calcifications increase by 25% annu-
ally, we calculated the age at which calcification was at
most 0.1 in at least one coronary artery territory. Among
443 patients, the median age for the onset of the first cal-
cification was 41 years (range 34-48) (Table 3). Women
experienced a later onset, with a median age of 42 years
(range 37-50), versus 39 years (range 30-47) (p < 0.001)
in men. Table 3 also presents the calculated onset of cal-
cification in all four evaluated coronary territories, both
overall and by sex. In the entire study group, the calculated
median age of first CAC in the LAD was earlier than in
the RCA, LCx, and LM. A sub-analysis by sex revealed
that calcifications in the LAD and RCA can be expected
significantly earlier in men than in women. 298 patients
exhibited involvement of more than one coronary vessel.
In this cohort, the estimated median time for the onset of
calcification in an additional coronary territory was 4.5
years (range 2.2 to 8) following the diagnosis of single-
vessel disease. For males, the calculated median age
for this onset was 3.8 years (range 1.6 to 6.9), while for
females it was 4.6 years (range 2.3 to 8.4) (p =0.2).

Discussion

Our study confirms a non-uniform CAC distribution,
with a clear predisposition to CAC formation in the LAD.
Particularly in low-risk category patients (group Al),
in patients with single-vessel disease (group N1) and within
the AIN1 subgroup, the LAD was the most frequently
affected vessel, impacting approximately three-quarters

of patients. Additionally, the calcium burden was higher
in the LAD compared with the RCA and LCx.

Our results are in line with previous observations. For
example, Bax et al. [14] noted that the proximal LAD and
LCx segments showed a higher plaque burden compared
with the distal segments. Based on the findings from
the MESA study involving 1,125 participants who devel-
oped detectable CAC on follow-up CT scan, it was noted
that the LAD (44% of total) was the most frequently
affected vessel, followed by the RCA (12%), LCx (10%),
and LM (6%). This pattern was consistent across age and
gender [15]. Iwasaki et al. [16] found that in patients with
mild to high CACs, the LAD was more often affected
than the other coronary arteries. Amanuma et al. [17]
noted that the proximal LAD had the most extensive
calcifications. Moreover, Enrico et al. [18] demonstrated
that nearly half of the coronary plaques were found in
the LAD, 25% in the RCA, and about 20% in the LCx.
Recently, findings from the EISNER (Early Identification
of Subclinical Atherosclerosis by Noninvasive Imaging
Research) registry, focusing on patients in the low-risk
category (Al), revealed that out of 385 subjects with
a proximal plaque, 295 subjects (77.6%) exhibited calci-
fication in the LAD [19]. Finally, a higher vulnerability
of the LAD plaque to rupture has been observed in pa-
tients with suspected coronary artery disease undergoing
cardiac catheterization with potential ad hoc percutaneous
coronary intervention [20].

The susceptibility of the LAD to atherosclerosis can
be understood through hemodynamic theory, which
proposes that atherosclerosis is a biological response of
endothelial cells (ECs) to the frictional drag force exerted
by circulating blood on the vessel wall, known as wall
shear stress (WSS) [21,22]. ECs respond to low and time-
averaged WSS by undergoing morphological reorgani-
zation, leading to increased permeability and activation
of multiple mechanosensing pathways. This biological
response of ECs to mechanical stimuli is termed mechano-
transduction [23,24]. Mechanotransduction leads to
an increase in atheroprone genes and the suppres-
sion of atheroprotective genes, resulting in a local

© Pol J Radiol 2026; 91: e11-e19
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pro-inflammatory response. Together with other cyto-
kines, whose endothelial expression is hemodynamically
mediated, bidirectional blood flow with oscillatory WSS
promotes local inflammation and expression of endo-
thelial bone morphogenetic proteins 4 and 9, facilitating
the transformation of vascular smooth muscle cells into
osteo-like cells. These cells acquire the ability to produce
a mineralized matrix, resulting in the formation of cal-
cium deposits commonly observed in individuals over
70 years old [25-28].

Therefore, atherosclerosis is not solely the result
of the accumulation of lipids and lipid-engorged cells
in the intima. It also includes a persistent inflamma-
tory response that contributes to virtually irreversible
and exponentially progressing calcifications [29]. Con-
sidering the role of the hemodynamic environment in
the development of atherosclerosis, the vulnerability
of the proximal segment of the LAD to atherosclerosis
can be attributed to its complex geometric character-
istics with complex blood flow [30,31]. In the proximal
LAD, secondary blood flows can be caused by contraction
during systole, as blood is redirected through penetrat-
ing septal perforators, similar to the effect of a myocardial
bridge. An intriguing observation supporting this theory
is that the plaque near the septal branch origin is asym-
metrical, with a larger mean atheroma area and intimal
thickness on the septal side compared to the antiseptal
side [32].

This specific plaque eccentricity is caused by the
“milking effect” of the septal perforator, which alters
the blood flow profile in the LAD towards the antisep-
tal side, consequently reducing WSS at the septal side.
We believe that the “milking effect” of septal perforators,
along with flow separation at the LM bifurcation and
the take-off of diagonal branches, creates an environment
that promotes plaque formation in the proximal LAD.
The uneven CAC distribution allows us to formulate
a generalized statement that plaque forms at the most
vulnerable site, exposed to the most unfavorable local
hemodynamic environment caused by specific geomet-
ric features. This location is often in the proximal LAD
segment, and the risk point of CAC can be identified
using computational fluid dynamics techniques before
the plaque is detectable by imaging modalities. How-
ever, the boundary conditions in the LAD must consider
the effect of septal perforators on the blood flow pattern
[21,33-35]. The annual progression of CACs varies in
the literature, ranging from 14.6% in control groups
to 59% in patients with end-stage renal disease [7,36,37].
This rapid increase in CACs in patients with renal dis-
ease can be linked to additional medial calcification.
In a preliminary study, a 24% annual increase in CACs
was found, with no significant variation by gender [38].
Another study by Janowitz et al. [39] indicated an an-
nual progression of CACs at 27% in patients with ob-
structive coronary artery disease, compared with 17%

among those without clinically manifest disease. Mitchell
et al. [40] observed 347 patients for 1.4 years and noted
an average annual increase of 21% in men and 18% in women
for CACs. Subsequently, a study of 299 subjects with
a 2.2-year follow-up period showed a 33% annual increase
in CACs, suggesting a doubling approximately every 2.5
years on average [41]. A meta-analysis of 10 trials reported
an average annualized CACs increase of 16.9% in patients
with cardiovascular disease [7]. An observational study
involving 817 asymptomatic subjects referred for sequen-
tial electron beam tomographic imaging showed a 26%
annual progression in calcium volume score used for
plaque quantification [42].

Numerous studies have investigated the impact of
different therapies on the progression of CAC. Analysis
of two randomized controlled trials found that statin ther-
apy did not result in significant differences in the change
of CAC density between baseline and over one year, with
annual CACs increasing by 28% to 32% [43]. Another
study showed a 29.7% yearly increase in CACs with statin
monotherapy [44]. Despite some variations between
men and women in the process of plaque formation, we
assumed a 25% annual increase in CACs for both gen-
ders. Evidence from studies such as the St. Francis and
EBEAT trials showed that although males initially had
higher baseline CACs than females, the progression rate
did not vary between genders [45]. Moreover, findings
from the KOICA (Korea Initiatives on Coronary Artery
Calcification) registry indicated that men and women at
similarly high-risk levels undergo coronary atherosclero-
sis progression in a similar manner [46]. In brief, CAC
scores rise exponentially in both sexes, allowing fairly
reliable predictions of future CACs [4]. Our data revealed
that the estimated onset of CAC deposition in the LAD
occurs earlier compared to the RCA, LCx and LM. Table 3
summarizes the data on the estimated age of calcification
initiation in the four coronary artery territories overall
and for both sexes. Gender-related analysis showed that
calcifications in the LAD and RCA appear earlier in men
than in women. This indicates that female sex only delays
the onset of calcifications in LAD and RCA. Our finding
aligns with the result from an autopsy series (Tampere
Sudden Death Study), which reported for proximal LAD
no notable differences in the total plaque area between
premenopausal women (< 50 years) and men in the same
age group. In this study there were also no sex differences
in atherosclerosis within the proximal RCA [47].

The vulnerability of the LAD artery to atherosclero-
sis is also evidenced by findings from the MESA study
pertaining to participants without standard modifiable
risk factors such as dyslipidemia, hypertension, diabetes
mellitus, and smoking (SMuRF-less patients) as well as
patients with myocardial infarction [48-49]. In the MESA
cohort with CACs > 0, SMuRF-less status was associ-
ated with a higher proportion of LAD disease compared
to participants with > 1 SMuRF [48]. In myocardial in-
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farction patients, the absence of SMuRFs was linked to
a higher occurrence of LAD infarction and increased
mortality [49,50]. Data concerning SMuRF-less patients,
according to our findings, revealed a unique vulnerability
of the LAD to atherosclerosis. This underscores the sig-
nificance of accounting for the specific hemodynamic pro-
atherosclerotic environment of the LAD.

Our study has some limitations that should be pointed
out. Firstly, we focused solely on calcified plaques. Secondly,
we did not adjust for confounding risk factors for CAC
and lacked detailed information on physical activity and
treatment. Thirdly, the number of subjects with LM calci-
fication was small, so any results involving the LM should
be interpreted with caution. Lastly, this was a retrospective
study conducted at a single center. However, these results
represent important preliminary observations that deserve
to be explored further using personalized algorithms to
calculate the onset of coronary artery calcification.

Initiation of coronary artery calcification and its distribution

Conclusions

The LAD was identified as the most commonly affect-
ed vessel in patients classified as low-risk (Al group),
those with single-vessel disease (N1 group), and those in
the AIN1 subgroup. The LAD artery showed the highest
plaque burden and earlier onset of coronary artery calcifi-
cation compared to other coronary artery territories. Our
findings offer important insights into screening strategies,
particularly in young adults of both sexes.
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