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Dear Editor,
I read with interest the article by Salkade and Rathi [1] 
on a segmentation plus classification pipeline for tubercu- 
losis detection on chest radiographs. The clinical aim is 
timely. Two points deserve clarification because they  
affect the credibility of the figures: what was actually evalu- 
ated and whether the evaluation relied on a heldout test or, 
at any stage, on the training set.

The Methods state that the authors sampled 700 tuber
culosis and 700 normal radiographs from the TB PortAL 
and split them 80/10/10 into training, validation, and test. 
Under that split, the nominal test would contain 140 images 
(70 tuberculosis and 70 normal). However, the confusion 
matrices in Figure 10 show totals that do not match this 
specification. For the proposed model (panel F), the ma-
trix reads 348, 2, 2, 348, i.e., 350 per class and 700 over-
all. For several baselines (panels A-E and G), the normal 
row sums to about 700, while the tuberculosis row sums 
to about 140, for an overall total of around 840, implying 
a 5 : 1 imbalance. These discrepancies suggest that some 

matrices may have been computed on the training set,  
or datasets other than the heldout test. In machine learn-
ing, it is not customary to present confusion matrices on 
the training set, because this practice overstates perfor-
mance and hides generalization errors.

To dispel any ambiguity, it would help to state for each 
model the exact sample counts used for the matrices, con-
firm that all results refer exclusively to the same heldout 
test split, and clarify whether any patient or sitelevel over-
lap could have leaked between training and test. Beyond 
that, external validation is necessary for claims approaching 
perfection. Without an independent cohort, the reported 
ROCAUC of 0.99 suggests overfitting: nearperfect confu-
sion matrices are likely inflated by distributional alignment 
or inadvertent reuse of data from the training set.

For deployment on chest radiography, evaluation should 
also reflect class imbalance and a fixed operating point. 
Precision–recall AUC, predictive values at plausible preva-
lences, a threshold chosen on validation and then locked 
for test, and basic calibration would make the results easier 
to interpret and more transferable to clinical workflows.
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