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Dear Editor,
I read with interest the article by Elhaie and colleagues 
describing a machine-learning model that uses multi-
sequence magnetic resonance imaging radiomics to 
classify active and inactive multiple sclerosis lesions [1].  
The topic is clinically important and the manuscript is 
clearly presented, but several aspects would benefit from 
clarification.

The first point concerns how patients and lesions 
were allocated between model development and evalua-
tion. Because multiple lesions from the same person share  
acquisition conditions and biological context, distributing 
lesions from a single patient across both the training and 
test sets may make the results look better than they would 
be in practice. The safest approach is to assign each patient 
entirely to a single data split or to use cross-validation that 
groups by patient, so no individual contributes data to 
more than one fold [2].

There also appears to be a discrepancy between the ac-
crual dates reported in the abstract and those in the me
thods. Reconciling the study window would help readers 
understand the timeline and any scanner or protocol 
changes that might affect radiomic features [1].

The work is framed as “contrast-free,” yet T1-weighted 
imaging (T1W) was acquired both before and after gado-
linium administration, and it is not explicit which version 
was used for feature extraction. If post-contrast images 
entered the model, the “contrast-free” claim should be 
moderated; if only pre-contrast T1W was used (alongside 

T2-weighted imaging/FLAIR/DWI/SWI), stating this 
plainly would avoid confusion.

The abstract also states that performance was compa-
rable to radiologists, but no reader benchmark is shown. 
Unless a human-reader analysis was actually performed, 
that phrasing should be removed or supported with data. 
Given the small internal test, it would be more informa-
tive to pre-specify a single operating threshold on vali-
dation and carry it forward unchanged to the test, then  
report precision–recall area under the curve and predic-
tive values at plausible prevalences to match deployment 
decisions [3,4]. As recently argued in related correspon-
dence, clarity on thresholds and calibration reduces opti-
mistic interpretations and improves reproducibility [5].

Finally, a note on preprocessing. Intensity normali-
sation and similar transformations should be fitted on 
training data only and then applied, unchanged, to vali-
dation and test. Stating this explicitly – and, if helpful, 
providing a sensitivity analysis – would rule out inadver-
tent information leakage and strengthen confidence in 
the results [2,4].
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