NEURORADIOLOGY / REVIEW PAPER
The peritumoral brain zone in glioblastoma: a review of the pretreatment approach
More details
Hide details
1
Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
2
Department of Neurosurgery, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
3
Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
These authors had equal contribution to this work
Submission date: 2024-05-02
Final revision date: 2024-06-10
Acceptance date: 2024-08-05
Publication date: 2024-10-11
Corresponding author
Bartosz Mruk
Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
Pol J Radiol, 2024; 89: 480-487
KEYWORDS
TOPICS
ABSTRACT
Glioblastomas are the most common and aggressive form of malignant primary brain tumors in adults. The standard treatment is surgical resection followed by radiotherapy and chemotherapy. Despite optimal treatment methods, the prognosis for patients remains poor.
Preoperative determination of glioblastoma margins remains beneficial for the complete removal of the tumor mass. Radiotherapy is essential for post-surgery treatment, but radioresistance is a significant challenge contributing to high mortality rates. Advanced imaging technologies are used to analyze the changes in the peritumoral brain zone (PTZ). Consequently, they may lead to the development of novel therapeutic options, especially targeting the marginal parts of a tumor, which could improve the prognosis of glioblastoma patients.
The clinical presentation of glioblastoma is heterogeneous and mostly depends on the location and size of a tumor. Glioblastomas are characterized by both intratumoral cellular heterogeneity and an extensive, diffuse infiltration into the normal tissue bordering a tumor called the PTZ. Neuroimaging techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), proton magnetic resonance spectroscopy (1H MRS), and chemical exchange saturation transfer (CEST) are useful methods in the evaluation of the tumor infiltration and thus the resection margin.
REFERENCES (47)
1.
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22: 1073-1113.
2.
Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neurooncology 2019; 21 (Suppl 5): v1-v100. DOI:
https://doi.org/10.1093/neuonc....
3.
Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review. JAMA 2023; 329: 574-587.
4.
Luo C, Song K, Wu S, Hameed NUF, Kudulaiti N, Xu H, et al. The prognosis of glioblastoma: a large, multifactorial study. Br J Neurosurg 2021; 35: 555-561.
5.
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryay-nov SA, Bykanov AE, et al. Perifocal zone of brain gliomas: application of diffusion kurtosis and perfusion MRI values for tumor invasion border determination. Cancers (Basel) 2023; 15: 2760. DOI: 10.3390/cancers15102760.
6.
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, et al. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Sci Res 2023; 101: 199-216.
7.
Gill BJ, Pisapia DJ, Malone HR, Goldstein H, Lei L, Sonabend A, et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc Natl Acad Sci U S A 2014; 111: 12550-12555.
8.
Yan JL, Li C, van der Hoorn A, Boonzaier NR, Matys T, Price SJ. A neural network approach to identify the peritumoral invasive areas in glioblastoma patients by using MR radiomics. Sci Rep 2020; 10: 9748. DOI: 10.1038/s41598-020-66691-6. Erratum in: Sci Rep 2020; 10: 13808.
9.
Malik N, Geraghty B, Dasgupta A, Maralani PJ, Sandhu M, Detsky J, et al. MRI radiomics to differentiate between low-grade glioma and glioblastoma peritumoral region. J Neurooncol 2021; 155: 181-191.
10.
Lemée JM, Clavreul A, Aubry M, Com E, de Tayrac M, Eliat PA, et al. Characterizing the peritumoral brain zone in glioblastoma: a multidisciplinary analysis. J Neurooncol 2015; 122: 53-61.
11.
Śledzińska P, Bebyn M, Szczerba E, Furtak J, Harat M, Olszewska N, et al. Glioma 2021 WHO classification: the superiority of NGS over IHC in routine diagnostics. Mol Diagn Ther 2022; 26: 699-713.
12.
Singh RR. Next-generation sequencing in high-sensitive detection of mutations in tumors: challenges, advances, and applications. J Mol Diagn 2020; 22: 994-1007.
13.
Rahimi Koshkaki H, Minasi S, Ugolini A, Trevisi G, Napoletano C, Zizzari IG, et al. Immunohistochemical characterization of immune infiltrate in tumor microenvironment of glioblastoma. J Pers Med 2020; 10: 112. DOI:
https://doi.org/10.3390/jpm100....
14.
Walecki J, Chojnacka E, Diagnostyka obrazowa guzów wewnątrzczaszkowych. Onkologia w Praktyce Klinicznej 2007; 3: 177-197.
15.
Yu H, Lou H, Zou T, Wang X, Jiang S, Huang Z, et al. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma. Eur Radiol 2017; 27: 4516-4524.
16.
Inoue A, Ohnishi T, Kohno S, Ohue S, Nishikawa M, Suehiro S, et al. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma. Neurosurg Rev 2021; 44: 587-597.
17.
Sebök M, van Niftrik CHB, Muscas G, Pangalu A, Seystahl K, Weller M, et al. Hypermetabolism and impaired cerebrovascular reactivity beyond the standard MRI-identified tumor border indicate diffuse glioma extended tissue infiltration. Neurooncol Adv 2021; 3: vdab048. DOI: 10.1093/noajnl/vdab048.
18.
Colopi A, Fuda S, Santi S, Onorato A, Cesarini V, Salvati M, et al. Impact of age and gender on glioblastoma onset, progression, and management. Mech Ageing Dev 2023; 211: 111801. DOI: 10.1016/j.mad.2023.111801.
19.
Sokolov E, Dietrich J, Cole AJ. The complexities underlying epilepsy in people with glioblastoma. Lancet Neurol 2023; 22: 505-516.
20.
Gonçalves FG, Chawla S, Mohan S. Emerging MRI techniques to redefine treatment response in patients with glioblastoma. J Magn Reson Imaging 2020; 52: 978-997.
21.
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96: 20211232. DOI: 10.1259/bjr.20211232.
22.
Li M, Huang W, Chen H, Jiang H, Yang C, Shen S, et al. T2/FLAIR abnormity could be the sign of glioblastoma dissemination. Front Neurol 2022; 13: 819216. DOI:
https://doi.org/10.3389/fneur.....
23.
Csutak C, Ștefan PA, Lenghel LM, Moroșanu CO, Lupean RA, Șimonca L, et al. Differentiating high-grade gliomas from brain metastases at magnetic resonance: the role of texture analysis of the peritumoral zone. Brain Sci 2020; 10: 638. DOI: 10.3390/brainsci10090638.
24.
D’Alessio A, Proietti G, Sica G, Scicchitano BM. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel) 2019; 11: 469. DOI: 10.3390/cancers11040469.
25.
Kubben PL, Wesseling P, Lammens M, Schijns OE, Ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Correlation between contrast enhancement on intraoperative magnetic resonance imaging and histopathology in glioblastoma. Surg Neurol Int 2012; 3: 158. DOI: 10.4103/2152-7806.105097.
26.
Norris CD, Quick SE, Parker JG, Koontz NA. Diffusion MR imaging in the head and neck: principles and applications. Neuroimaging Clin N Am 2020; 30: 261-282.
27.
Sidibe I, Tensaouti F, Roques M, Cohen-Jonathan-Moyal E, Laprie A. Pseudoprogression in glioblastoma: role of metabolic and functional MRI – systematic review. Biomedicines 2022; 10: 285. DOI:
https://doi.org/10.3390/biomed....
28.
Czernicki Z, Horsztyński D, Jankowski W, Grieb P, Walecki J. Malignancy of brain tumors evaluated by proton magnetic resonance spectroscopy (1H-MRS) in vitro. Acta Neurochir Suppl 2000; 76: 17-20.
29.
Booth TC, Wiegers EC, Warnert EAH, Schmainda KM, Riemer F, Nechifor RE, et al. High-grade glioma treatment response monitoring.
30.
biomarkers: a position statement on the evidence supporting the use of advanced MRI techniques in the clinic, and the latest bench-to-bedside developments. Part 2: Spectroscopy, chemical exchange saturation, multiparametric imaging, and radiomics. Front Oncol 2022; 11: 811425. DOI: 10.3389/fonc.2021.811425.
31.
Weinberg BD, Kuruva M, Shim H, Mullins ME. Clinical applications of magnetic resonance spectroscopy in brain tumors: from diagnosis to treatment. Radiol Clin North Am 2021; 59: 349-362.
32.
Koike H, Morikawa M, Ishimaru H, Ideguchi R, Uetani M, Miyoshi M. Amide proton transfer-chemical exchange saturation transfer imaging of intracranial brain tumors and tumor-like lesions: our experience and a review. Diagnostics (Basel) 2023; 13: 914. DOI: 10.3390/diagnostics13050914.
33.
Akbari H, Kazerooni AF, Ware JB, Mamourian E, Anderson H, Guiry S, et al. Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging. Sci Rep 2021; 11: 15011. DOI: 10.1038/s41598-021-94560-3.
34.
Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, et al. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage Clin 2019; 22: 101694. DOI: 10.1016/j.nicl.2019.101694 ???Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci. 2022 Feb 15;10(4):892-908. doi: 10.1039/d1bm01401c???.
35.
Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR imaging and spectroscopic methods to study brain tumor metabolism. Front Neurol 2022; 13: 789355. DOI:
https://doi.org/10.3389/fneur.....
36.
Kwiatkowska-Miernik A, Mruk B, Sklinda K, Zaczyński A, Walecki J. Radiomics in the diagnosis of glioblastoma. Pol J Radiol 2023; 88: 461-466.
37.
Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings [published correction appears in Eur Radiol 2017]. Eur Radiol 2017; 27: 4188-4197.
38.
Long H, Zhang P, Bi Y, et al. MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme. Front Oncol 2023; 12: 1042498. DOI: 10.3389/fonc.2022.1042498.
39.
Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022; 128: 47-58.
40.
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin 2020; 70: 299-312.
41.
Pinkiewicz M, Pinkiewicz M, Walecki J, Zawadzki M. A systematic review on intra-arterial cerebral infusions of chemotherapeutics in the treatment of glioblastoma multiforme: the state-of the-art. Front Oncol 2022; 12: 950167. DOI: 10.3389/fonc.2022.950167.
42.
Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszaw-ski KL, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2016; 2: 1460-1469.
43.
Zeppa P, De Marco R, Monticelli M, Massara A, Bianconi A, Di Perna G, et al. Fluorescence-guided surgery in glioblastoma: 5-ALA, SF or both? Differences between fluorescent dyes in 99 consecutive cases. Brain Sci 2022; 12: 555. DOI: 10.3390/brainsci12050555.
44.
Baig Mirza A, Christodoulides I, Lavrador JP, Giamouriadis A, Vastani A, Boardman T, et al. 5-Aminolevulinic acid-guided resection improves the overall survival of patients with glioblastoma – a comparative cohort study of 343 patients. Neurooncol Adv 2021; 3: vdab047. DOI: 10.1093/noajnl/vdab047.
45.
Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 2015; 77: 663-673.
46.
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996.
47.
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, et al. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology 2023; 108: 423-431.