TECHNOLOGY AND CONTRAST MEDIA / REVIEW PAPER
Photon-counting computed tomography in radiology
More details
Hide details
1
Interventional MR Clinical R&D Institute, Ankara University, Ankara, Türkiye
2
Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye
3
National MR Research Center (UMRAM), Bilkent University, Ankara, Türkiye
4
Yıldırım Beyazıt University, Türkiye
5
Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanità Pubblica, Pisa, Toscana, Italy
These authors had equal contribution to this work
Submission date: 2024-05-30
Final revision date: 2024-07-28
Acceptance date: 2024-07-28
Publication date: 2024-09-11
Corresponding author
Oktay Algin
Department of Radiology, Ankara University, Medical Faculty, Ankara, Turkey, e-mail: oktay.algin@umram.bilkent.edu.tr
Pol J Radiol, 2024; 89: 433-442
KEYWORDS
TOPICS
ABSTRACT
Photon-counting detector computed tomography (PCD-CT) devices have recently been introduced into practice, despite photon-counting detector technology having been studied for many years. PCD-CT devices are expected to provide advantages in dose reduction, tissue specificity, artifact-free imaging, and multi-contrast demonstration capacity. Noise reduction and increased spatial resolution are expected using PCD-CT, even under challenging scanning conditions. Some experimental or preliminary studies support this hypothesis. This pictorial review illustrates the features of PCD-CT systems, particularly in the interventional field. PCD-CT offers superior image quality and better lesion discrimination than conventional CT techniques for various conditions. PCD-CT shows significant improvements in many aspects of vascular imaging. It is still in its early stages, and several challenges have been identified. Also, PCD-CT devices have some important caveats. The average cost of these devices is 3 to 4 times higher than conventional CT units. This additional cost must be justified by improved clinical benefits or reduced clinical harms. Further investigations will be needed to resolve these issues.
REFERENCES (61)
1.
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D et al. Photon-counting detector CT – first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024. DOI: 10.1055/a-2312-6914.
2.
Lanca L, Silva A. Digital radiography detectors: a technical overview. Digital imaging systems for plain radiography. Springer, NY; 2013, pp. 9-19.
3.
Spahn M. Flat detectors and their clinical applications. Eur Radiol 2005; 15: 1934-1947.
4.
Gutjahr R, Halaweish AF, Yu Z, Leng S, Yu L, Li Z, et al. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Invest Radiol 2016; 51: 421-429.
5.
Persson M, Huber B, Karlsson S, Liu X, Chen H, Xu C, et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol 2014; 59: 6709-6727.
6.
Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys 2013; 40: 100901. DOI: 10.1118/1.4820371.
7.
Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology 2018; 289: 293-312.
9.
Talla PT. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging. Doctoral dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg; 2011.
10.
Toia GV, Mileto A, Borhani AA, Chen GH, Ren L, Uyeda JW, et al. Approaches, advantages, and challenges to photon counting detector and multi-energy CT. Abdom Radiol (NY) 2024; 49: 3251-3260.
11.
Pourmorteza A, Symons R, Reich DS, Bagheri M, Cork TE, Kappler S, et al. Photon-counting CT of the brain: in vivo human results and image-quality assessment. AJNR Am J Neuroradiol 2017; 38: 2257-2263.
12.
Symons R, Reich DS, Bagheri M, Cork TE, Krauss B, Ulzheimer S, et al. Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results. Invest Radiol 2018; 53: 135-142.
13.
Luhta R, Chappo M, Harwood B, Mattson R, Salk D, Vrettos C. A new 2D-tiled detector for multislice CT. In: Flynn MJ, Hsieh J (eds.). Proceedings of SPIE: medical imaging – physics of medical imaging. Bellingham, Wash: International Society for Optics and Photonics; 2006, p. 61420U.
14.
Symons R, Pourmorteza A, Sandfort V, Ahlman MA, Cropper T, Mallek M, et al. Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology 2017; 285: 980-989.
15.
Onishi H, Tsuboyama T, Nakamoto A, Ota T, Fukui H, Tatsumi M, et al. Photon-counting CT: technical features and clinical impact on abdominal imaging. Abdom Radiol (NY) 2024. DOI: 10.1007/s00261-024-04414-5.
16.
Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci 2011; 58: 614-625.
17.
Rajbhandary PL, Hsieh SS, Pelc NJ. Effect of spatial-energy correlation in PCD due to charge sharing, scatter, and secondary photons. In: Flohr TG, Lo JY, Gilat Schmidt T (eds.). Proceedings of SPIE: Medical Imaging – physics of medical imaging. Bellingham, Wash: International Society for Optics and Photonics; 2017, p. 101320.
18.
Leng S, Yu Z, Halaweish A, Kappler S, Hahn K, Henning A, et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J Med Imaging (Bellingham) 2016; 3: 043504. DOI: 10.1117/1.JMI.3.4.043504.
19.
Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multibin photon counting detectors. Phys Med Biol 2007; 52: 4679-4696.
20.
Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, et al. Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 2019; 39: 729-743.
21.
Giersch J, Niederlöhner D, Anton G. The influence of energy weighting on x-ray imaging quality. Nucl Instrum Methods Phys Res A 2004; 531: 68-74.
22.
Stein T, Rau A, Russe MF, Arnold P, Faby S, Ulzheimer S, et al. Photon-counting computed tomography – basic principles, potenzial benefits, and initial clinical experience. Fortschr Röntgenstr 2023; 195: 691-698.
23.
Pourmorteza A, Symons R, Schöck F, et al. Image quality assessment and dose-efficiency of quarter-millimeter photon-counting CT of humans: first in vivo experience [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America; 2017.
24.
Berger N, Marcon M, Saltybaeva N, Kalender WA, Alkadhi H, Frauenfelder T, et al. Dedicated breast computed tomography with a photon-counting detector: initial results of clinical in vivo imaging. Invest Radiol 2019; 54: 409-418.
25.
Berger N, Marcon M, Frauenfelder T, Boss A. Dedicated spiral breast computed tomography with a single photon-counting detector: initial results of the first 300 women. Invest Radiol 2020; 55: 68-72.
26.
Graafen D, Müller L, Halfmann M, et al. Photon-counting detector CT improves quality of arterial phase abdominal scans: a head-to-head comparison with energy-integrating CT. Eur J Radiol 2022.DOI: 10.1016/j.ejrad.2022.110514.
27.
Leng S, Yu Z, Halaweish A, Kappler S, Hahn K, Henning A, et al. A high-resolution imaging technique using a whole-body, research photon counting detector CT system. In: Kontos D, Flohr TG (eds.). Proceedings of SPIE: Medical Imaging 2016 – physics of medical imaging. Bellingham, Wash: International Society for Optics and Photonics; 2016, p. 97831.
28.
Leng S, Gutjahr R, Ferrero A, Kappler S, Henning A, Halaweish A, et al. Ultra-high spatial resolution, multi-energy CT using photon counting detector technology. In: Flohr TG, Lo JY, Gilat Schmidt T (eds.). Proceedings of SPIE: Medical Imaging – physics of medical imaging. Bellingham, Wash: International Society for Optics and Photonics; 2017, p. 101320Y.
29.
Zhou W, Montoya J, Gutjahr R, Ferrero A, Halaweish A, Kappler S, et al. Lung nodule volume quantification and shape differentiation with an ultra-high resolution technique on a photon counting detector CT system. Proc SPIE Int Soc Opt Eng 2017; 11: 10132. DOI: 10.1117/12.2255736.
30.
Chen H, Xu C, Persson M, Danielsson M. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study. J Med Imaging (Bellingham) 2015; 2: 043504. DOI: 10.1117/1.JMI.2.4.043504.
31.
Cau R, Saba L, Balestrieri A, Meloni A, Mannelli L, La Grutta L, et al. Photon-counting computed tomography in atherosclerotic plaque characterization. Diagnostics (Basel) 2024; 14: 1065. DOI: 10.3390/diagnostics14111065.
32.
Meloni A, Frijia F, Panetta D, Degiorgi G, De Gori C, Maffei E, et al. Photon-counting computed tomography (PCCT): technical background and cardio-vascular applications. Diagnostics (Basel) 2023; 13: 645. DOI: 10.3390/diagnostics13040645.
33.
Schwartz FR, Malinzak MD, Amrhein TJ. Photon-counting computed tomography scan of a cerebrospinal fluid venous fistula. JAMA Neurol 2022; 79: 628-629.
34.
Kuno H, Onaya H, Iwata R, Kobayashi T, Fujii S, Hayashi R et al. Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT. Radiology 2012; 265: 488-496.
35.
Pourmorteza A, Symons R, Sandfort V, Mallek M, Fuld MK, Henderson G, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology 2016; 279: 239-245.
36.
Alvarez RE. Near optimal energy selective x-ray imaging system performance with simple detectors. Med Phys 2010; 37: 822-841.
37.
Wang AS, Hsieh SS, Pelc NJ. Dual-energy and multienergy techniques in vascular imaging. In: Saveden C, Rudin S (eds.). Cardiovascular and Neuromuscular Imaging: Physics and Technology. Boca Raton, Fla: CRC; 2015, pp. 191-202.
38.
Schmitt N, Wucherpfennig L, Rotkopf LT, Sawall S, Kauczor HU, Bendszus M, et al. Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT – in vitro comparison of a standard brain imaging protocol. Eur Radiol 2023; 33: 803-811.
39.
Nasirudin RA, Mei K, Penchev P, Fehringer A, Pfeiffer F, Rummeny EJ, et al. Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique. PLoS One 2015; 10: e0124831. DOI: 10.1371/journal.pone.0124831.
40.
Sandfort V, Symons R, Cork TE, Bluemke DA, Pourmorteza A. 250 micron resolution photon-counting CT: potential for improved imaging of calcified coronary artery stenoses [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America; 2017, p. 139.
41.
Bratke G, Hickethier T, Bar-Ness D, Bunck AC, Maintz D, Pahn G, et al. Spectral photon-counting computed tomography for coronary stent imaging: evaluation of the potential clinical impact for the delineation of in-stent restenosis. Invest Radiol 2020; 55: 61-67.
42.
Do TD, Sawall S, Heinze S, Reiner T, Ziener CH, Stiller W, et al. A semi-automated quantitative comparison of metal artifact reduction in photon-counting computed tomography by energy-selective thresholding. Sci Rep 2020; 10: 21099. DOI: 10.1038/s41598-020-77904-3.
43.
Zhou W, Bartlett DJ, Diehn FE, Glazebrook KN, Kotsenas AL, Carter RE, et al. Reduction of metal artifacts and improvement in dose efficiency using photon counting detector CT and tin filtration. Invest Radiol 2019; 54: 204-211.
44.
Yu Z, Leng S, Kappler S, Hahn K, Li Z, Halaweish AF, et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon-counting detector using a whole-body research photon-counting CT scanner. J Med Imaging (Bellingham) 2016; 3: 043503. DOI: 10.1117/1.JMI.3.4.043503.
45.
Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 2017; 283: 723-728.
46.
Dong J, Wang X, Jiang X, Gao L, Li F, Qiu J, et al. Low-contrast agent dose dual-energy CT monochromatic imaging in pulmonary angiography versus routine CT. J Comput Assist Tomogr 2013; 37: 618-625.
47.
Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E, et al. Dual-energy spectral CT: various clinical vascular applications. Radiographics 2016; 36: 1215-1232.
48.
Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016; 61: 1572-1595.
49.
Mongan J, Rathnayake S, Fu Y, Wang R, Jones EF, Gao DW, et al. In vivo differentiation of complementary contrast media at dual-energy CT. Radiology 2012; 265: 267-272.
50.
Leng S, Zhou W, Yu Z, Halaweish A, Krauss B, Schmidt B, et al. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets. Phys Med Biol 2017; 62: 7216-7232.
51.
Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N, Pache G, et al. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2011; 2: 149-159.
52.
Müllner M, Schlattl H, Hoeschen C, Dietrich O. Feasibility of spectral CT imaging for the detection of liver lesions with gold-based contrast agents: a simulation study. Phys Med 2015; 31: 875-881.
53.
Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res 2004; 94: 433-445.
54.
Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009; 29: 992-1000.
55.
Si-Mohamed S, Cormode DP, Bar-Ness D, Sigovan M, Naha PC, Langlois JB, et al. Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo. Nanoscale 2017; 9: 18246-18257.
56.
Barber WC, Wessel JC, Nygard E, Iwanczyk JS. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications. Nucl Instrum Methods Phys Res A 2015; 784: 531-537.
57.
Meng B, Cong W, Xi Y, De Man B, Yang J, Wang G. Model and reconstruction of a K-edge contrast agent distribution with an x-ray photon-counting detector. Opt Express 2017; 25: 9378-9392.
58.
Barreto M, Schoenhagen P, Nair A, Amatangelo S, Milite M, Obuchowski NA, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2008; 2: 234-242.
59.
Schirra CO, Brendel B, Anastasio MA, Roessl E. Spectral CT: a technology primer for contrast agent development. Contrast Media Mol Imaging 2014; 9: 62-70.
60.
Cormode DP, Si-Mohamed S, Bar-Ness D, Sigovan M, Naha PC, Balegamire J, et al. Multicolor spectral photon counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Sci Rep 2017; 7: 4784. DOI: 10.1038/s41598-017-04659-9.
61.
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, et al. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53: 1889-1902.