NEURORADIOLOGY / LETTER TO THE EDITOR
On patient-level splitting, contrast-free claims and unsupported comparators in “Machine learning-based classification of multiple sclerosis lesion activity using multi-sequence MRI radiomics”
 
More details
Hide details
1
Neuroradiology Unit, SS. Annunziata Hospital, Cosenza, Italy
 
 
Submission date: 2025-10-20
 
 
Acceptance date: 2025-11-03
 
 
Publication date: 2026-02-05
 
 
Corresponding author
Stefania Galassi Galassi   

Interventional Radiology, SS. Annunziata Hospital, Cosenza, Italy
 
 
Pol J Radiol, 2026; 91(1): 56-57
 
TOPICS
REFERENCES (5)
1.
Elhaie M, Etemadifar M, Rezaei Adariani A, Khorasani A, ShahbaziGahrouei D. Machine learning-based classification of multiple sclerosis lesion activity using multi-sequence MRI radiomics: a complete analysis of T1, T2, FLAIR, DWI, and SWI features. Pol J Radiol 2025; 90: e394-e403. DOI:10.5114/pjr/206986.
 
2.
Roberts DR, Bahn V, Ciuti S, Boice MS, Elith J, Guillera-Arroita G.Cross-validation strategies for data with temporal, spatial, hierar­chical, or phylogenetic structure. Ecography 2017; 40: 913-929.
 
3.
Saito T, Rehmsmeier M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 2015; 10: e0118432. DOI:10.1371/journal.pone.0118432.
 
4.
Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Calster BV, et al. TRIPOD+AI: updated reporting guidance for clinical prediction models that use regression or machine learning methods. BMJ 2024; 385: e078378. DOI:10.1136/bmj-2023-078378.
 
5.
Pastore EP. Correspondence regarding “Clinical parameters-based machine learning models for predicting intraoperative hemodynamic instability in hypertensive pheochromocytomas and paragangliomas patients”. World J Urol 2025; 43: 610. DOI:10.1007/s00345-025-06002-8.
 
ISSN:1899-0967
Journals System - logo
Scroll to top