NEURORADIOLOGY / REVIEW PAPER
Radiologic evaluation of the uncinate fasciculus using diffusion tensor imaging and tractography: review of technical considerations and clinical implications
More details
Hide details
1
Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Krakow, Poland
2
Department of Neurosurgery, Functional and Stereotactic Neurosurgery, CM UMK Bydgoszcz, Poland
3
Department of Neurosurgery, Stereotactic and Functional Neurosurgery, University Hospital No. 2, Bydgoszcz, Poland
These authors had equal contribution to this work
Submission date: 2025-04-06
Final revision date: 2025-06-08
Acceptance date: 2025-06-09
Publication date: 2025-07-07
Corresponding author
Sara Kieronska-Siwak
Department of Neurosurgery, Functional and Stereotactic Neurosurgery, CM UMK Bydgoszcz, Poland
Pol J Radiol, 2025; 90: 324-344
KEYWORDS
TOPICS
ABSTRACT
Diffusion tensor imaging (DTI) and tractography are powerful non-invasive techniques for studying the human brain’s white matter pathways. The uncinate fasciculus (UF) is a key frontotemporal tract involved in emotion regulation, memory, and language. Despite advancements, challenges persist in accurately mapping its structure and function due to methodological limitations in data acquisition and analysis.
This review aims to provide a comprehensive overview of the strengths and limitations of DTI and tractography in studying the UF, focusing on its anatomy, data acquisition techniques, and associated neurological and psychiatric disorders.
A systematic review of over 30 years of literature on UF was conducted, encompassing anatomical studies, DTI methodologies, and clinical applications. Studies involving both postmortem dissections and in vivo imaging were analysed, with particular attention to different DTI acquisition parameters, fibre tracking algorithms, and their impact on imaging accuracy. DTI has significantly improved our understanding of UF anatomy and its role in neurocognitive functions. However, methodological constraints such as low spatial resolution, crossing fibres, and inter-subject variability limit its precision. Advances in higher-field magnetic resonance imaging, improved diffusion models, and artificial intelligence-enhanced tractography offer promising solutions. UF abnormalities have been linked to various disorders, including schizophrenia, depression, autism spectrum disorders, and neurodegenerative diseases.
While DTI and tractography are invaluable tools for studying the UF, their limitations necessitate cautious interpretation of results. Future research should focus on refining imaging techniques to enhance accuracy and clinical applicability, paving the way for better diagnostic and therapeutic strategies.
REFERENCES (100)
1.
Tusa RJ, Ungerleider LG. The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Ann Neurol 1985; 18: 583-591.
2.
Gaffan D, Wilson CRE. Medial temporal and prefrontal function: recent behavioural disconnection studies in the macaque monkey. Cortex 2008; 44: 928-935.
3.
Borges KCM, Nishijo H, Aversi-Ferreira TA, Ferreira JR, Caixeta LF. Anatomical study of intrahemispheric association fibers in the brains of capuchin monkeys (Sapajus sp.). Biomed Res Int 2015; 2015: 648128. DOI: 10.1155/2015/648128.
4.
Catani M, Robertsson N, Beyh A, Huynh V, de Santiago Requejo F, Howells H, et al. Short parietal lobe connections of the human and monkey brain. Cortex 2017; 97: 339-357.
5.
Bammer R, Markl M, Barnett A, Acar B, Alley MT, Pelc NJ, et al. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn Reson Med 2003; 50: 560-569.
6.
Oishi K, Huang H, Yoshioka T, Ying SH, Zee DS, Zilles K, et al. Superficially located white matter structures commonly seen in the human and the macaque brain with diffusion tensor imaging. Brain Connect 2011; 1: 37-47.
7.
Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 2010; 23: 803-820.
8.
Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 2005; 26: 1164-1173.
9.
Lewinn KZ, Connolly CG, Wu J, Drahos M, Hoeft F, Ho TC, et al. White matter correlates of adolescent depression: Structural evidence for frontolimbic disconnectivity. J Am Acad Child Adolesc Psychiatry 2014; 53: 899-909, 909.e1-7. DOI: 10.1016/j.jaac.2014.04.021.
10.
Oyefiade AA, Ameis S, Lerch JP, Rockel C, Szulc KU, Scantlebury N, et al. Development of short-range white matter in healthy children and adolescents. Hum Brain Mapp 2018; 39: 204-217.
11.
Hau J, Aljawad S, Baggett N, Fishman I, Carper RA, Müller RA. The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders. Hum Brain Mapp 2019; 40: 3153-3164.
12.
Hau J, Baker A, Chaaban C, Kohli JS, Jao Keehn RJ, Linke AC, et al. Reduced asymmetry of the hand knob area and decreased sensorimotor u-fiber connectivity in middle-aged adults with autism. Cortex 2022; 153: 110-125.
13.
Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 2004; 25: 356-369.
14.
Mamata H, Mamata Y, Westin CF, Shenton ME, Kikinis R, Jolesz FA, et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol 2002; 23: 67-75.
15.
Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 2013; 34: 1866-1872.
16.
Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008; 44: 1105-1132.
17.
Bhatia K, Henderson L, Yim M, Hsu E, Dhaliwal R. Diffusion tensor imaging investigation of uncinate fasciculus anatomy in healthy controls: description of a subgenual stem. Neuropsychobiology 2018; 75: 132-140.
18.
Kierońska S, Sokal P, Dura M, Jabłońska M, Rudaś M, Jabłońska R. Tractography-based analysis of morphological and anatomical characteristics of the uncinate fasciculus in human brains. Brain Sci 2020; 10: 709. DOI: 10.3390/brainsci10100709.
19.
Riley KJ, O’Neill DP, Kralik SF. Subcortical U-fibers: signposts to the diagnosis of white matter disease. Neurographics 2018; 8: 234-243.
20.
O’Donnell LJ, Pasternak O. Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr Res 2015; 161: 133-141.
21.
van der Knaap MS, Valk J. Magnetic Resonance of Myelination and Myelin Disorders. Springer; 2005, p. 1084.
22.
Bisecco A, Caiazzo G, D’Ambrosio A, Sacco R, Bonavita S, Docimo R, et al. Fatigue in multiple sclerosis: the contribution of occult white matter damage. Mult Scler 2016; 22: 1676-1684.
24.
Müller HP, Kassubek J. Diffusion tensor magnetic resonance imaging in the analysis of neurodegenerative diseases. J Vis Exp 2013; 77: 50427. DOI: 10.3791/50427.
25.
Zhu W, Deng S, Jiang H, Zhang J, Li B, Liu W, et al. Application of diffusion tensor imaging in the diagnosis of post-stroke aphasia: a meta-analysis and systematic review. Front Psychol 2023; 14: 1140588. DOI: 10.3389/fpsyg.2023.1140588.
26.
Zhao X, You M, Ren W, Ji L, Liu Y, Lu M. The application of diffusion tensor imaging in patients with mild cognitive impairment: a systematic review and meta-analysis. Front Neurol 2025; 16: 1467578. DOI: 10.3389/fneur.2025.1467578.
27.
Minati L, Weglarz WP. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: a review. Concepts Magn Reson Part A Bridg Educ Res 2007; 30: 278-307.
28.
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJ, Bastin M, et al. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: a systematic review. PLoS One 2024; 19: e0299634. DOI: 10.1371/journal.pone.0299634.
29.
Borkowski K, Krzyżak AT. Analysis and correction of errors in DTI-based tractography due to diffusion gradient inhomogeneity. J Magn Res 2018; 296: 5-11.
30.
Borkowski K, Krzyżak AT. The generalized Stejskal-Tanner equation for non-uniform magnetic field gradients. J Magn Res 2018; 296: 23-28.
31.
Borkowski K, Krzyżak AT. Assessment of the systematic errors caused by diffusion gradient inhomogeneity in DTI-computer simulations. NMR Biomed 2019; 32: e4130. DOI: 10.1002/nbm.4130.
32.
Borkowski K, Krzyżak AT. Analysis and correction of errors in DTI-based tractography due to diffusion gradient inhomogeneity. J Magn Reson 2018; 296: 5-11.
33.
Assemlal HE, Tschumperlé D, Brun L, Siddiqi K. Recent advances in diffusion MRI modeling: angular and radial reconstruction. Med Image Anal 2011; 15: 369-396.
34.
Neema M, Arora A, Healy BC, Guss ZD, Brass SD, Duan Y, et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J Neuroimaging 2009; 19: 3-8.
36.
Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 1996; 213: 560-570.
37.
Özarslan E, Vemuri BC, Mareci TH. Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn Reson Med 2005; 53: 866-876.
38.
Jennings JE, Kassam AB, Fukui MB, Monroy-Sosa A, Chakravarthi S, Kojis N, et al. The surgical white matter chassis: a practical 3-dimensional atlas for planning subcortical surgical trajectories. Oper Neurosurg 2018; 14: 469-482.
39.
Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 2013; 118: 1367-1377.
41.
Duerk JL. All you really need to know about MRI physics. Moriel NessAiver. University of Maryland, Baltimore, 1996, $35.00 book/$395.00 transparencies. J Magn Res Imaging 1997; 7: 613-614.
42.
Gibby WA. Basic principles of magnetic resonance imaging Vol. 16. Neurosurgery Clinics of North America. W.B. Saunders; 2005, p. 1-64.
43.
Judith M, Post D, Yiannoutsos C, Simpson D, Booss J, Clifford DB, et al. Progressive multifocal leukoencephalopathy in AIDS: are there any MR findings useful to patient management and predictive of patient survival? AJNR Am J Neuroradiol 1999; 20: 1896-1906.
44.
Marcus CD, Taylor-Robinson SD, Sargentoni J, Ainsworth JG, Frize G, Easterbrook PJ, et al. H MR spectroscopy of the brain in HIV-1-seropositive subjects: evidence for diffuse metabolic abnormalities. Metab Brain Dis 1998; 13: 123-136.
45.
Gheuens S, Wüthrich C, Koralnik IJ. Progressive multifocal leukoencephalopathy: why gray and white matter. Annu Rev Pathol 2013; 8: 189-215.
46.
Miyagawa M, Maeda M, Umino M, Kagawa K, Nakamichi K, Sakuma H, et al. Low signal intensity in U-fiber identified by susceptibility-weighted imaging in two cases of progressive multifocal leukoencephalopathy. J Neurol Sci 2014; 344: 198-202.
47.
Galluzzi P, Sacchini M, Bartalini G, Monti L, Cerase A, Lamantea E, et al. LBSL (leukoencephalopathy with brain stem and spinal cord involvement and high lactate) without sparing of the u-fibers and globi pallidi: a case report. Eur J Radiol Extra 2011; 79: e73-e76. DOI:
https://doi.org/10.1016/j.ejre....
48.
Miki Y, Grossman R, Udupa J, Wei L, Kolson D, Mannon L, et al. Isolated U-fiber involvement in MS: preliminary observations. Neurology 1998; 50: 1301-1306.
49.
Buyukturkoglu K, Vergara C, Fuentealba V, Tozlu C, Dahan JB, Carroll BE, et al. Machine learning to investigate superficial white matter integrity in early multiple sclerosis. J Neuroimaging 2022; 32: 36-47.
50.
Kuchel PW, Pagès G, Nagashima K, Velan S, Vijayaragavan V, Nagarajan V, et al. Stejskal-tanner equation derived in full. Concepts Magn Reson Part A Bridg Educ Res 2012; 40: 205-214.
51.
Zhang S, Laidlaw DH. DTI Fiber Clustering in the Whole Brain. IEEE Visualization 2004, Austin, TX, USA, 2004, pp. 28. DOI: 10.1109/VISUAL.2004.26.
52.
Song AW. Diffusion modulation of the fMRI signal: early investigations on the origin of the BOLD signal. Neuroimage 2012; 62: 949-952.
53.
Razi A, Seghier ML, Zhou Y, McColgan P, Zeidman P, Park HJ, et al. Large-scale DCMs for resting-state fMRI. Netw Neurosci 2017; 1: 222-241.
54.
Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 2008; 40: 1044-1055.
55.
Hasan KM, Kamali A, Iftikhar A, Datta S, Nelson F, Wolinsky JS, et al. Diffusion tensor tractogrpahy quantification of Wallerian degeneration of the uncinate fasciculus in multiple sclerosis. Proc Intl Soc Mag Reson Med 2009; 17: 3196.
56.
Olson IR, Heide RJV Der, Alm KH, Vyas G. Development of the uncinate fasciculus: Implications for theory and developmental disorders. Vol. 14. Developmental Cognitive Neuroscience. Elsevier Ltd; 2015, p. 50-61.
57.
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, et al. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11: 1225960. DOI: 10.3389/fped.2023.1225960.
58.
Olivé G, Peñaloza C, Vaquero L, Laine M, Martin N, Rodriguez-Fornells A. The right uncinate fasciculus supports verbal short-term memory in aphasia. Brain Struct Funct 2023; 228: 875-893.
59.
Nakamura M, McCarley RW, Kubicki M, Dickey CC, Niznikiewicz MA, Voglmaier MM, et al. Fronto-temporal disconnectivity in schizotypal personality disorder: a diffusion tensor imaging study. Biol Psychiatry 2005; 58: 468-478.
60.
Bracht T, Linden D, Keedwell P. A review of white matter microstructure alterations of pathways of the reward circuit in depression. J Affect Dis 2015; 187: 45-53.
61.
Wang W, Qian S, Liu K, Li B, Li M, Xin K, et al. Reduced white matter integrity and its correlation with clinical symptom in first-episode, treatment-naive generalized anxiety disorder. Behav Brain Res 2016; 314: 159-164.
62.
Xu EP, Nguyen L, Leibenluft E, Stange JP, Linke JO. A meta-analysis on the uncinate fasciculus in depression. Psychol Med 2023; 53: 2721-2731.
63.
Stevens M, Ní Mhurchú S, Corley E, Egan C, Hallahan B, McDonald C, et al. Uncinate fasciculus microstructural organisation and emotion recognition in schizophrenia: controlling for hit rate bias. Front Behav Neurosci 2024; 18: 1302916. DOI: 10.3389/fnbeh.2024.1302916.
64.
Zhang S, Li B, Jiang J, Hu X, Li H, Cao L, et al. Abnormal focal segments in left uncinate fasciculus in adults with obsessive-compulsive disorder. Front Psychiatry 2023; 14: 1128808. DOI: 10.3389/fpsyt.2023.1128808.
65.
Sedlacik J, Schüre JR, Boelmans K, Fiehler J. Microstructural change of short association fibers in Parkinson’s disease and normal aging assessed by diffusion tensor imaging. Proc Intl Soc Mag Reson Med 2015; 23: 2207.
66.
Rashidi F, Khanmirzaei MH, Hosseinzadeh F, Kolahchi Z, Jafarimehrabady N, Moghisseh B, et al. Cingulum and uncinate fasciculus microstructural abnormalities in Parkinson’s Disease: a systematic review of diffusion tensor imaging studies. Biology (Basel) 2023; 12: 475. DOI: 10.3390/biology12030475.
67.
Kurki TJI, Laalo JP, Oksaranta OM. Diffusion tensor tractography of the uncinate fasciculus: pitfalls in quantitative analysis due to traumatic volume changes. J Magn Res Imaging 2013; 38: 46-53.
68.
Taoka T, Iwasaki S, Sakamoto M, Nakagawa H, Fukusumi A, Myochin K,et al. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in alzheimer disease: evaluation of the “tract of interest” by diffusion tensor tractography AJNR Am J Neuroradiol 2006; 27: 1040-1045.
69.
Jenkins BG. Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. Neuroimage 2012; 62: 1072-1085.
70.
Grandjean J, Canella C, Anckaerts C, Ayrancı G, Bougacha S, Bienert T, et al. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 2020; 205: 116278. DOI: 10.1016/j.neuroimage.2019.116278.
71.
Johansen-Berg H, Rushworth MFS. Using diffusion imaging to study human connectional anatomy. Ann Rev Neurosci 2009; 32: 75-94.
72.
Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK, et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 2002; 15: 494-515.
73.
Mitter C, Prayer D, Brugger PC, Weber M, Kasprian G. In vivo tractography of fetal association fibers. PLoS One 2015; 10: e0119536. DOI: 10.1371/journal.pone.0119536.
74.
Sundram F, Deeley Q, Sarkar S, Daly E, Latham R, Craig M, et al. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex 2012; 48: 216-229.
75.
Zhang H, Schramm S, Schröder A, Zimmer C, Meyer B, Krieg SM, et al. Function-based tractography of the language network correlates with aphasia in patients with language-eloquent glioblastoma. Brain Sci 2020; 10: 412. DOI: 10.3390/brainsci10070412.
76.
Lai CH, Wu Y. The white matter microintegrity alterations of neocortical and limbic association fibers in major depressive disorder and panic disorder: the comparison. Medicine (Baltimore) 2016; 95: e2982. DOI: 10.1097/MD.0000000000002982.
77.
Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 2013; 118: 1367-1377.
78.
Phillips OR, Clark KA, Luders E, Azhir R, Joshi SH, Woods RP, et al. Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 2013; 3: 146-159.
79.
Beppu T, Inoue T, Shibata Y, Yamada N, Kurose A, Ogasawara K, et al. Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 2005; 63: 56-61.
80.
Hoeft F, Barnea-Goraly N, Haas BW, Golarai G, Ng D, Mills D, et al. More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 2007; 27: 11960-11965.
81.
Park HJ, Friston KJ, Pae C, Park B, Razi A. Dynamic effective connectivity in resting state fMRI. Neuroimage 2018; 180: 594-608.
82.
Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, et al. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage 2008; 43: 29-35.
83.
Nazeri A, Chakravarty MM, Felsky D, Lobaugh NJ, Rajji TK, Mulsant BH, et al. Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 2013; 38: 1954-1962.
84.
Wilkinson M, Wang R, van der Kouwe A, Takahashi E. White and gray matter fiber pathways in autism spectrum disorder revealed by ex vivo diffusion MR tractography. Brain Behav 2016; 6: e00483. DOI: 10.1002/brb3.483.
85.
Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell’Acqua F, McHugh DJ, et al. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 2018; 182: 8-38.
86.
Suk HI, Wee CY, Lee SW, Shen D. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage 2016; 129: 292-307.
87.
Pike GB. Quantitative functional MRI: concepts, issues and future challenges. Neuroimage 2012; 62: 1234-1240.
88.
Mesri HY, David S, Viergever MA, Leemans A. The adverse effect of gradient nonlinearities on diffusion MRI: from voxels to group studies. Neuroimage 2020; 205: 116127. DOI: 10.1016/j.neuroimage.2019.116127.
89.
Qiu TM, Zhang Y, Wu JS, Tang WJ, Zhao Y, Pan ZG, et al. Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir (Wien) 2010; 152: 1847-1857.
90.
Clark VP. A history of randomized task designs in fMRI. Neuroimage 2012; 62: 1190-1194.
91.
Smith SM. The future of FMRI connectivity. Neuroimage 2012; 62: 1257-1266.
92.
Lauritzen M, Mathiesen C, Schaefer K, Thomsen KJ. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62: 1040-1050.
93.
Högberg A, Hughes RE. Many different types of Scandinavian flint-visual classification and energy dispersive X-ray fluorescence. Microblade Technology View project E22 projektet Arkeologisk slutundersökning Sölve-Stensnäs, Blekinge Län. View project [Internet]. 2017. Available from:
https://www.researchgate.net/p....
94.
Linden AH, Hönekopp J. Heterogeneity of research results: a new perspective from which to assess and promote progress in psychological science. Perspect Psychol Sci 2021; 16: 358-376.
95.
Radoeva PD, Milev VT, Hunt JI, Legere CH, Deoni SCL, Sheinkopf SJ, et al. Systematic review: white matter microstructural organization in adolescents with depression. JAACAP Open 2023; 1: 233-245.
96.
Dick AS, Bernal B, Tremblay P. The language connectome: new pathways, new concepts. Neuroscientist 2014; 20: 453-467.
97.
Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 2013; 136: 2619-2628.
98.
Smits AR, van Zandvoort MJE, Ramsey NF, de Haan EHF, Raemaekers M. Reliability and validity of DTI-based indirect disconnection measures. Neuroimage Clin 2023; 39: 103470. DOI: 10.1016/j.nicl.2023.103470.
99.
Lasek J, Stefańska AK, Kierońska-Siwak S, Obuchowicz R, Krzyżak AT. Reduction of systematic errors in diffusion tensor imaging of the human brain as a prospect for increasing the precision of planning neurosurgical operations with particular emphasis on fiber tracking. Comput Biol Med 2025; 194: 110503. DOI: 10.1016/j.compbiomed.2025.110503.
100.
Lauzon CB, Asman AJ, Esparza ML, Burns SS, Fan Q, Gao Y, et al. Simultaneous analysis and quality assurance for diffusion tensor imaging. PLoS One 2013; 8: e61737. DOI: 10.1371/journal.pone.0061737.