Percutaneous lung needle biopsies – utility and complications in various chest lesions: a single-institution experience
More details
Hide details
Publication date: 2018-03-23
Pol J Radiol, 2018; 83: 103-108
It is crucial to obtain a specific diagnosis before treatment of chest pathology is initiated. The purpose of the study is to present the utility of percutaneous biopsies, core and fine-needle aspiration, in various thoracic lesions, and related complications.

Material and methods:
A total of 593 transthoracic biopsies were performed in the Department of Radiology between 2013 and 2016. Fine-needle aspiration biopsy (FNAB) and core biopsy (CB) were implemented. The procedures were divided into four groups according to the location of the pathology: lung lesions (LL – 540), mediastinal masses (MM – 25), chest wall tumours (CWT – 13), and pleural lesions (PL – 15). The lung lesion group was divided into two subgroups: lung nodules and lung infiltrations. All groups were analysed in respect of diagnostic accuracy, pathological findings, and complication rate.

Pathological diagnosis was confirmed in 447 cases after all 593 procedures. The sensitivity of malignancy diagnosis in the group of lung tumours was 75% for FNAB and 89% for CB. The sensitivity in other groups, where CB was a preferable technique, was counted for lung infiltration, mediastinal masses, chest wall tumours, and pleural lesions and amounted to 83.3%, 90.9%, 100%, and 85.7%, respectively. In the group of lung tumours malignancy was confirmed most commonly (79%), while in the lung infiltration group benign processes dominated (83%). There was no statistical difference between the pneumothorax rate after CB and FNAB. Haemoptysis appeared more often after CB.

FNAB and CB are useful, safe, and sensitive tools in the diagnostic work-up. They can both be used to diagnose almost all chest pathologies.

Laspas F, Roussakis A, Efthimiadou R, et al. Percutaneous CT-guided fine-needle aspiration of pulmonary lesions: Results and complications in 409 patients. J Med Imaging Radiat Oncol 2008; 52: 458-462.
Geraghty PR, Kee ST, McFarlane G, et al. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology 2003; 229: 475-481.
Yeow KM, Tsay PK, Cheung YC, et al. Factors affecting diagnostic accuracy of CT-guided coaxial cutting needle lung biopsy: retrospective analysis of 631 procedures. J Vasc Interv Radiol 2003; 14: 581-588.
Montaudon M, Latrabe V, Pariente A, et al. Factors influencing accuracy of CT-guided percutaneous biopsies of pulmonary lesions. Eur Radiol 2004; 14: 1234-1240.
Azrumelashvili T, Mizandari M, Dundua T. Imaging Guided Percutaneal Core Biopsy Of Pulmonary And Pleural Masses – Technique And Complications. Georgian Med News 2016; 250: 25-33.
Petranovic M, Gilman MD, Muniappan A, et al. Diagnostic yield of CT-guided percutaneous transthoracic needle biopsy for diagnosis of anterior mediastinal masses. Am J Roentgenol 2015; 205: 774-779.
Azrumelashvili T, Mizandari M, Magalashvili D, et al. Imaging Guided Percutaneal Core Biopsy Of Thoracic Bone And Soft Tissue Lesions – Technique And Complications. Georgian Med News 2016; 250: 17-24.
Zhang HF, Zeng XT, Xing F, et al. The diagnostic accuracy of CT-guided percutaneous core needle biopsy and fine needle aspiration in pulmonary lesions: a meta-analysis. Clin Radiol 2016; 71: e1-10.
Heerink WJ, de Bock GH, de Jonge GJ, et al. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol 2017; 27: 138-148.
Belfiore G, Di Filippo S, Guida C, et al. CT-guided biopsy of lung lesions. Nucl Med Biol 1994; 21: 713-719.
Journals System - logo
Scroll to top