NEURORADIOLOGY / REVIEW PAPER
Quantitative brain volumetry in neurological disorders:
from disease mechanisms to software solutions
More details
Hide details
1
2nd Department of Clinical Radiology, Medical University of Warsaw, Warsaw, Poland
2
Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
3
Institute of Physiology and Pathology of Hearing, World Hearing Centre, Warsaw, Poland
Submission date: 2025-04-02
Final revision date: 2025-04-07
Acceptance date: 2025-04-07
Publication date: 2025-06-11
Corresponding author
Dominika Bachurska
Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
Pol J Radiol, 2025; 90: 299-306
KEYWORDS
TOPICS
ABSTRACT
Quantitative magnetic resonance imaging (MRI) volumetry has become a pivotal component in modern neurology, bridging the gap between detailed neuroimaging and clinical decision-making. By employing advanced imaging techniques like 3D T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) sequences, MRI volumetry enables clinicians to objectively quantify brain volume changes associated with neurological conditions such as Alzheimer’s disease, multiple sclerosis, epilepsy, and myotonic dystrophy. Automated segmentation tools, including FreeSurfer, NeuroQuant, volBrain, and AccuBrain, facilitate precise and reproducible analysis of structural brain changes, contributing significantly to early diagnosis, patient monitoring, and therapeutic planning. In Alzheimer’s disease, volumetric MRI enables the detection of early hippocampal and temporal lobe atrophy, providing a crucial biomarker for diagnosis and monitoring disease progression. Similarly, in multiple sclerosis, volumetric analyses quantify grey and white matter degeneration, reflecting motor and cognitive impairment severity. Moreover, quantitative MRI techniques precisely delineate structural abnormalities like hippocampal sclerosis and focal cortical dysplasia in epilepsy, crucial for accurate surgical intervention. Ongoing advances in artificial intelligence and machine learning are set to further enhance these volumetric approaches, addressing current limitations such as inter-observer variability and expanding their clinical applicability. This review outlines the existing landscape and future trajectory of quantitative MRI volumetry, underscoring its expanding role in clinical neurology and personalised medicine.
REFERENCES (88)
1.
Agosta F, Galantucci S, Filippi M. Advanced magnetic resonance imaging of neurodegenerative diseases. Neurol Sci 2017; 38: 41-51.
2.
Giorgio A, De Stefano N. Clinical use of brain volumetry. J Magn Reson Imaging 2013; 37: 1-14.
3.
O’Reilly T, Webb AG. In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT. Magn Reson Med 2022; 87: 884-895.
4.
Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005; 54: 507-512.
5.
Serai SD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr Radiol 2022; 52: 217-227.
6.
Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E; The Alzheimer’s Disease Neuroimaging Initiative. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience 2024; 13: giae049.
7.
Bink A, Schmitt M, Gaa J, Mugler JP 3rd, Lanfermann H, Zanella FE. Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results. Eur Radiol 2006; 16: 1104-1110.
8.
Sati P, George IC, Shea CD, Gaitán MI, Reich DS. FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins. Radiology 2012; 265: 926-932.
9.
Lerch JP, van der Kouwe AJW, Raznahan A, Paus T, Johansen-Berg H, Miller KL, et al. Studying neuroanatomy using MRI. Nat Neurosci 2017; 20: 314-326.
10.
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6: 67-77.
11.
Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int 2018; 2018: 3740461.
12.
Cashmore MT, McCann AJ, Wastling SJ, McGrath C, Thornton J, Hall MG. Clinical quantitative MRI and the need for metrology. Br J Radiol 2021; 94: 20201215.
13.
Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 2010; 67: 428-433.
14.
Chan D, Fox NC, Jenkins R, Scahill RI, Crum WR, Rossor MN. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 2001; 57: 1756-1763.
15.
Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 1999; 52: 91-100.
16.
Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 2010; 21: 187-221.
17.
Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: a systematic review with meta-analysis. Alzheimers Dement (Amst) 2015; 1: 487-504.
18.
Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009; 132: 1310-1323.
19.
Thal DR, Attems J, Ewers M. Spreading of amyloid, tau, and microvascular pathology in Alzheimer’s disease: findings from neuropathological and neuroimaging studies. J Alzheimers Dis 2014; 42 Suppl. 4: S421-S429.
20.
Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 2003; 54: 343-351.
21.
Lawrence E, Vegvari C, Ower A, Hadjichrysanthou C, De Wolf F, Anderson RM. A systematic review of longitudinal studies which measure Alzheimer’s disease biomarkers. J Alzheimers Dis 2017; 59: 1359-1379.
22.
Filippi M, Preziosa P, Arnold DL, Barkhof F, Harrison DM, Maggi P, et al. Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol 2023; 270: 1286-1299.
23.
Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 2016; 15: 292-303.
24.
Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998; 121 ( Pt 1): 3-24.
25.
Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002; 125: 1676-1695.
26.
Ge Y, Grossman RI, Udupa JK, Wei L, Mannon LJ, Polansky M, et al. Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 2000; 214: 665-670.
27.
De Stefano N, Silva DG, Barnett MH. Effect of fingolimod on brain volume loss in patients with multiple sclerosis. CNS Drugs 2017; 31: 289-305.
28.
Vollmer T, Signorovitch J, Huynh L, Galebach P, Kelley C, DiBernardo A, et al. The natural history of brain volume loss among patients with multiple sclerosis: a systematic literature review and meta-analysis. J Neurol Sci 2015; 357: 8-18.
29.
Rogers JM, Panegyres PK. Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations. J Clin Neurosci 2007; 14: 919-927.
30.
Messina S, Patti F. Gray matters in multiple sclerosis: cognitive impairment and structural MRI. Mult Scler Int 2014; 2014: 609694.
31.
Ryberg C, Rostrup E, Sjöstrand K, Paulson OB, Barkhof F, Scheltens P, et al. White matter changes contribute to corpus callosum atrophy in the elderly: the LADIS study. AJNR Am J Neuroradiol 2008; 29: 1498-1504.
32.
Wang Y, Sun P, Wang Q, Trinkaus K, Schmidt RE, Naismith RT, et al. Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 2015; 138: 1223-1238.
33.
Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P, et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology 2018; 90: 278-288.
34.
Andravizou A, Dardiotis E, Artemiadis A, Sokratous M, Siokas V, Tsouris Z, et al. Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Auto Immun Highlights 2019; 10: 7.
35.
Dardiotis E, Nousia A, Siokas V, Tsouris Z, Andravizou A, Mentis A-FA, et al. Efficacy of computer-based cognitive training in neuropsychological performance of patients with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 20: 58-66.
36.
Despotović I, Goossens B, Philips W. MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015; 2015: 450341.
37.
Hansen CB, Rogers BP, Schilling KG, Nath V, Blaber JA, Irfanoglu O, et al. Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI. Magn Reson Imaging 2021; 76: 69-78.
38.
Poliachik SL, Friedman SD, Carter GT, Parnell SE, Shaw DW. Skeletal muscle edema in muscular dystrophy: clinical and diagnostic implications. Phys Med Rehabil Clin N Am 2012; 23: 107-22, xi.
39.
Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 2015; 1852: 594-606.
40.
Romeo V, Pegoraro E, Ferrati C, Squarzanti F, Sorarù G, Palmieri A, et al. Brain involvement in myotonic dystrophies: neuroimaging and neuropsychological comparative study in DM1 and DM2. J Neurol 2010; 257: 1246-1255.
41.
Schneider-Gold C, Bellenberg B, Prehn C, Krogias C, Schneider R, Klein J, et al. Cortical and subcortical grey and white matter atrophy in myotonic dystrophies type 1 and 2 is associated with cognitive impairment, depression and daytime sleepiness. PLoS One 2015; 10: e0130352.
42.
Wenninger S, Montagnese F, Schoser B. Core clinical phenotypes in myotonic dystrophies. Front Neurol 2018; 9: 303.
43.
Caso F, Agosta F, Peric S, Rakočević-Stojanović V, Copetti M, Kostic VS, et al. Cognitive impairment in myotonic dystrophy type 1 is associated with white matter damage. PLoS One 2014; 9: e104697.
44.
Krieger B, Schneider-Gold C, Genç E, Güntürkün O, Prehn C, Bellenberg B, et al. Greater cortical thinning and microstructural integrity loss in myotonic dystrophy type 1 compared to myotonic dystrophy type 2. J Neurol 2024; 271: 5525-5540.
45.
Ates S, Deistung A, Schneider R, Prehn C, Lukas C, Reichenbach JR, et al. Characterization of iron accumulation in deep gray matter in myotonic dystrophy type 1 and 2 using quantitative susceptibility mapping and R2* relaxometry: A magnetic resonance imaging study at 3 Tesla. Front Neurol 2019; 10: 1320.
46.
Kornblum C, Lutterbey G, Bogdanow M, Kesper K, Schild H, Schröder R, et al. Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol 2006; 253: 753-761.
47.
Minnerop M, Luders E, Specht K, Ruhlmann J, Schneider-Gold C, Schröder R, et al. Grey and white matter loss along cerebral midline structures in myotonic dystrophy type 2. J Neurol 2008; 255: 1904-1909.
48.
Reimann J, Kornblum C. Towards central nervous system involvement in adults with hereditary myopathies. J Neuromuscul Dis 2020; 7: 367-393.
49.
Guerrini R, Barba C. Focal cortical dysplasia: an update on diagnosis and treatment. Expert Rev Neurother 2021; 21: 1213-1224.
50.
Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56: 1669-1686.
51.
Colon AJ, van Osch MJP, Buijs M, Grond JVD, Boon P, van Buchem MA, et al. Detection superiority of 7 T MRI protocol in patients with epilepsy and suspected focal cortical dysplasia. Acta Neurol Belg 2016; 116: 259-269.
52.
Crino PB. Focal cortical dysplasia. Semin Neurol 2015; 35: 201-208.
53.
Rocca MA, Barkhof F, De Luca J, Frisén J, Geurts JJG, Hulst HE, et al. The hippocampus in multiple sclerosis. Lancet Neurol 2018; 17: 918-926.
54.
Kabat J, Król P. Focal cortical dysplasia – review. Pol J Radiol 2012; 77: 35-43.
55.
Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52: 158-174.
56.
Kim DW, Lee SK, Chu K, Park KI, Lee SY, Lee CH, et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology 2009; 72: 211-216.
57.
Lv R-J, Sun Z-R, Cui T, Guan H-Z, Ren H-T, Shao X-Q. Temporal lobe epilepsy with amygdala enlargement: a subtype of temporal lobe epilepsy. BMC Neurol 2014; 14: 194.
58.
Chalifoux JR, Perry N, Katz JS, Wiggins GC, Roth J, Miles D, et al. The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. J Neurosurg Pediatr 2013; 11: 268-273.
59.
Vos SB, Winston GP, Goodkin O, Pemberton HG, Barkhof F, Prados F, et al. Hippocampal profiling: Localized magnetic resonance imaging volumetry and T2 relaxometry for hippocampal sclerosis. Epilepsia 2020; 61: 297-309.
60.
Adler S, Lorio S, Jacques TS, Benova B, Gunny R, Cross JH, et al. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI. NeuroImage Clin 2017; 15: 95-105.
61.
Wang H, Ahmed SN, Mandal M. Automated detection of focal cortical dysplasia using a deep convolutional neural network. Comput Med Imaging Graph 2020; 79: 101662.
62.
Taveira KVM, Carraro KT, Catalão CHR, Lopes L da S. Morphological and morphometric analysis of the hippocampus in Wistar rats with experimental hydrocephalus. Pediatr Neurosurg 2012; 48: 163-167.
63.
Nowell M, Rodionov R, Diehl B, Wehner T, Zombori G, Kinghorn J, et al. A novel method for implementation of frameless StereoEEG in epilepsy surgery. Neurosurgery 2014; 10 Suppl. 4: 525-533; discussion 533-534.
64.
Harkey T, Baker D, Hagen J, Scott H, Palys V. Practical methods for segmentation and calculation of brain volume and intracranial volume: a guide and comparison. Quant Imaging Med Surg 2022; 12: 3748-3761.
65.
McCarthy CS, Ramprashad A, Thompson C, Botti J-A, Coman IL, Kates WR. A comparison of FreeSurfer-generated data with and without manual intervention. Front Neurosci 2015; 9: 379.
66.
Fischl B. FreeSurfer. Neuroimage 2012; 62: 774-781.
67.
Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 2013; 80: 105-124.
68.
Gracien R-M, van Wijnen A, Maiworm M, Petrov F, Merkel N, Paule E, et al. Improved synthetic T1-weighted images for cerebral tissue segmentation in neurological diseases. Magn Reson Imaging 2019; 61: 158-166.
69.
Iglesias JE, Van Leemput K, Augustinack J, Insausti R, Fischl B, Reuter M, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. Neuroimage 2016; 141: 542-555.
70.
Heo YJ, Baek HJ, Skare S, Lee H-J, Kim D-H, Kim J, et al. Automated brain volumetry in patients with memory impairment: Comparison of conventional and ultrafast 3D T1-weighted MRI sequences using two software packages. AJR Am J Roentgenol 2022; 218: 1062-1073.
71.
Manjón JV, Coupé P. VolBrain: an online MRI brain volumetry system. Front Neuroinform 2016; 10: 30.
72.
Koussis P, Toulas P, Glotsos D, Lamprou E, Kehagias D, Lavdas E. Reliability of automated brain volumetric analysis: A test by comparing NeuroQuant and volBrain software. Brain Behav 2023; 13: e3320.
73.
Liu S, Hou B, Zhang Y, Lin T, Fan X, You H, et al. Inter-scanner reproducibility of brain volumetry: influence of automated brain segmentation software. BMC Neurosci 2020; 21: 35.
74.
Song H, Lee SA, Jo SW, Chang S-K, Lim Y, Yoo YS, et al. Erratum: agreement and reliability between clinically available software programs in measuring volumes and normative percentiles of segmented brain regions. Korean J Radiol 2023; 24: 926-927.
75.
Suh PS, Jung W, Suh CH, Kim J, Oh J, Heo H, et al. Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg. Front Neurol 2023; 14: 1221892.
76.
Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer’s Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with NeuroQuant and FreeSurfer. J Neuroimaging 2015; 25: 721-727.
77.
Kahhale I, Buser NJ, Madan CR, Hanson JL. Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer. Brain Inform 2023; 10: 9.
78.
Perlaki G, Horvath R, Nagy SA, Bogner P, Doczi T, Janszky J, et al. Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation. Sci Rep 2017; 7: 2418.
79.
Khosravi P, Mohammadi S, Zahiri F, Khodarahmi M, Zahiri J. AI-enhanced detection of clinically relevant structural and functional anomalies in MRI: Traversing the landscape of conventional to explainable approaches. J Magn Reson Imaging 2024; 60: 2272-2289.
80.
Cè M, Irmici G, Foschini C, Danesini GM, Falsitta LV, Serio ML, et al. Artificial intelligence in brain tumor imaging: A step toward personalized medicine. Curr Oncol 2023; 30: 2673-2701.
81.
Seshimo H, Rashed EA. Segmentation of low-grade brain tumors using mutual attention multimodal MRI. Sensors (Basel) 2024; 24: 7576.
82.
González-Villà S, Oliver A, Valverde S, Wang L, Zwiggelaar R, Lladó X. A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 2016; 73: 45-69.
83.
Jackson A. Quantitative MRI of the brain: measuring changes caused by disease. By P Tofts, pp. xvi+633, 2003 (John Wiley & Sons Ltd, Chichester, UK) £175.00 ISBN 0-470-84721-2. Br J Radiol 2005; 78: 87-87.
84.
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010; 29: 1310-1320.
85.
Woodard JP, Carley-Spencer MP. No-reference image quality metrics for structural MRI. Neuroinformatics 2006; 4: 243-262.
86.
Backhausen LL, Herting MM, Buse J, Roessner V, Smolka MN, Vetter NC. Quality control of structural MRI images applied using FreeSurfer-A hands-on workflow to rate motion artifacts. Front Neurosci 2016; 10: 558.
87.
Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One 2017; 12: e0184661.
88.
Klapwijk ET, van de Kamp F, van der Meulen M, Peters S, Wierenga LM. Qoala-T: a supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage 2019; 189: 116-129.