GASTROINTESTINAL AND ABDOMINAL RADIOLOGY / ORIGINAL PAPER
Figure from article: Chronic liver disease...
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Chronic liver disease (CLD) is a significant health issue, and detection is crucial for effective treatment. This study aimed to develop a deep learning based convolutional neural network (DeepCNN) to differentiate CLD from non-CLD patients using magnetic resonance imaging (MRI) images without segmentation, enhancing diagnostic accuracy and supporting timely intervention.

Material and methods:
A retrospective study was conducted using MRI data from 184 patients collected between 2018 and 2024, totaling 1112 images (460 normal, 652 CLD). Various MRI sequences, including axial T1, T2, and coronal, were used. The images were preprocessed with resizing, augmentation, and normalization techniques. The DeepCNN model was trained and compared against traditional machine learning (ML) algorithms, including logistic regression, k-nearest neighbor, support vector machines, and random forest. Model performance was evaluated using accuracy, precision, recall, F1-score, and confusion matrices.

Results:
The DeepCNN model achieved a 93% accuracy and an F1-score of 0.939. Precision and recall for CLD classification were 97% and 98%, respectively. In comparison, traditional ML algorithms performed with accuracies ranging from 72.31% to 83.16%, with random forest achieving the highest. The DeepCNN model significantly outperformed these methods, demonstrating its strength in medical image classification. Using axial-only images reduced accuracy to 86%, showing that coronal views contribute valuable information. Limitation of data constrained learning.

Conclusions:
The DeepCNN model provides superior accuracy in diagnosing CLD compared to traditional ML me­thods, using MRI images without segmentation. This approach offers a practical solution for improving CLD detection and paves the way for future enhancements using attention mechanisms and advanced deep learning architectures.
REFERENCES (29)
1.
Kalra A, Yetiskul E, Wehrle CJ, Tuma F. Physiology, Liver. Treasure Island (FL): StatPearls Publishing; 2023.
 
2.
Sharma A, Nagalli S. Chronic Liver Disease. Treasure Island (FL): StatPearls Publishing; 2023.
 
3.
Heidelbaugh JJ, Bruderly M. Cirrhosis and chronic liver failure: part I.Diagnosis and evaluation. Am Fam Physician 2006; 74: 756-762.
 
4.
Scheidler J, Fink U, Steiner W, Steitz HO. 3-phase spiral CT – a new noninvasive procedure for the differentiation of multifocal liver lesions. Aktuelle Radiol 1995; 5: 15-18 [Article in German].
 
5.
Brehmer K, Brismar TB, Morsbach F, Svensson A, Stål P, Tzortza­kakis A, et al. Triple arterial phase CT of the liver with radiation dose equivalent to that of single arterial phase CT: initial experience. Radiology 2018; 289: 111-118.
 
6.
Rahman H, Bukht TFN, Imran A, Tariq J, Tu S, Alzahrani A. A deep learning approach for liver and tumor segmentation in CT images using ResUNet. Bioengineering 2022; 9: 368. DOI: 10.3390/bioengineering9080368.
 
7.
Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA, et al. The medical segmentation decathlon. Nat Commun 2022; 13: 4128. DOI: 10.1038/s41467-022-30695-9.
 
8.
Nayantara PV, Kamath S, Manjunath KN, Rajagopal KV. Computeraided diagnosis of liver lesions using CT images: a systematic review. Comput Biol Med 2020; 127: 104035. DOI: 10.1016/j.compbiomed.2020.104035.
 
9.
Yin C, Zhang H, Du J, Zhu Y, Zhu H, Yue H. Artificial intelligence in imaging for liver disease diagnosis. Front Med 2025; 12: 1591523. DOI: 10.3389/fmed.2025.1591523.
 
10.
Hariharan S, Anandan D, Krishnamoorthy M, Kukreja V, Goyal N, Chen SY. Advancements in liver tumor detection: a comprehensive review of various deep learning models. Computer Modeling in Engineering & Sciences 2024; 142: 91-122.
 
11.
Suganthi B, Vidhya U. Advancing liver cancer diagnosis: innovative deep learning algorithms for segmentation and classification. In: Proceedings of the International Conference on Integration of Emerging Technologies for the Digital World (ICIETDW). Chennai, India 2024. p. 1-5. DOI: 10.1109/ICIETDW61607.2024.10939218.
 
12.
Bashir U, Wang C, Smillie R, Rayabat Khan AK, Ahmed HT, Ordidge K, et al. Deep learning for liver lesion segmentation and classification on staging CT scans of colorectal cancer patients: a multi-site technical validation study. Clin Radiol 2025; 85: 106914. DOI: 10.1016/.
 
13.
j.crad.2025.106914.
 
14.
Yashaswini Gowda N, Manjunath RV. Automatic liver tumor classification using UNet70 a deep learning model. J Liver Transplant 2025; 18: 100260. DOI: 10.1016/j.liver.2025.100260.
 
15.
Ghobadi V, Ismail LI, Wan Hasan WZ, Ahmad H, Ramli HR, Norsahperi NMH, et al. Challenges and solutions of deep learning-based automated liver segmentation: a systematic review. Comput Biol Med 2025, 185: 109459. DOI: 10.1016/j.compbiomed.2024.109459.
 
16.
Nakatsuka T, Tateishi R, Sato M, Hashizume N, Kamada A, Nakano H, et al. Deep learning and digital pathology powers prediction of HCC development in steatotic liver disease. Hepatology 2025; 81: 976-989.
 
17.
Madhavi AV, Prasad S. An effective approach for early liver disease prediction using deep learning method with immunity-based Boosted Ebola optimization search algorithm. Expert Syst Appl 2025; 285: 127711. DOI: 10.1016/j.eswa.2025.127711.
 
18.
Nowak S, Mesropyan N, Faron A, Block W, Reuter M, Attenberger UI, et al. Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning. Eur Radiol 2021; 31: 8807-8815.
 
19.
Zhu Z, Lv D, Zhang X, Wang SH, Zhu G. Deep learning in the classification of stage of liver fibrosis in chronic hepatitis B with magnetic resonance ADC images. Contrast Media Mol Imaging 2021; 2021: 2015780. DOI: 10.1155/2021/2015780.
 
20.
Ambrish G, Ganesh B, Ganesh A, Srinivas C, Dhanraj, Mensinkal K. Logistic regression technique for prediction of cardiovascular disease. Global Trans Proc 2022; 3: 127-130.
 
21.
Alanazi R. Identification and prediction of chronic diseases using machine learning approach. J Healthc Eng 2022; 2022: 2826127. DOI: 10.1155/2022/2826127.
 
22.
Baek J, Swanson TA, Tuthill T, Parker KJ. Support vector machine (SVM)-based liver classification: fibrosis, steatosis, and inflammation. In: Proceedings of the IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA 2020. p. 1-4. DOI: 10.1109/IUS46767. 2020.9251611.
 
23.
Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens 2025; 26: 217-222.
 
24.
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gra­dient-based localization. In: Proceedings of the IEEE International Conference on Com­puter Vision (ICCV). Venice, Italy 2020. p. 618-626. DOI: 10.1109/ICCV.2017.74.
 
25.
Jiang H, Yin Y, Zhang J, Deng W, Li C. Deep learning for liver cancer histopathology image analysis: a comprehensive survey. Eng Appl Artif Intell 2024; 133: 108436. DOI: 10.1016/j.engappai.2024.108436.
 
26.
Sung YS, Park B, Park HJ, Lee SS. Radiomics and deep learning in liver diseases. J Gastroenterol Hepatol 2021; 36: 561-568.
 
27.
Chen C, Chen C, Ma M, Ma X, Lv X, Dong X, et al. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Med Inform Decis Mak 2022; 22: 176. DOI: 10.1186/s12911-022-01919-1.
 
28.
Nilofer A, Sasikala S. A comparative study of machine learning algorithms using explainable artificial intelligence system for predicting liver disease. Comput Open 2023; 1: 2350003. DOI: 10.1142/S2972370123500034.
 
29.
Ghosh M, Raihan MS, Raihan M, Akter L. A comparative analysis of machine learning algorithms to predict liver disease. Intell Autom Soft Comput 2021; 29: 917-928.
 
ISSN:1899-0967
Journals System - logo
Scroll to top