PEDIATRIC RADIOLOGY / REVIEW PAPER
Quantification of liver iron overload among pediatric patients with magnetic resonance imagining: current state of the art
More details
Hide details
1
2nd Department of Radiology, Medical University of Gdansk, Poland
2
Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdansk, Poland
3
1st Department of Radiology, Medical University of Gdansk, Poland
Submission date: 2025-05-27
Final revision date: 2025-08-04
Acceptance date: 2025-08-10
Publication date: 2025-12-02
Corresponding author
Gabriela Alicja Hryniewicz
2nd Department of Radiology, Medical University of Gdansk, 17 M. Smoluchowskiego St., 80-214 Gdansk, Poland
Pol J Radiol, 2025; 90: 582-590
KEYWORDS
TOPICS
ABSTRACT
Secondary iron overload in pediatric oncology patients is related to excessive iron accumulation in the liver, with subsequent cirrhosis and dangerous complications affecting numerous other organs. Liver iron concentration (LIC) correlates linearly with the total body iron stores; therefore, the quantification of hepatic iron is of major research interest. Although liver biopsy has been considered the gold standard for identifying iron overload, magnetic resonance imaging (MRI) is a non-invasive and highly accurate alternative method for the assessment of hemochromatosis. Our intention is to present a brief description of MRI-based procedures and a comparison of selected methods. Briefly, among the available methods, the liver-to-muscle signal intensity is accessible and easy to apply; however,
it assumes that muscle is pathology-free, which may not always be true.
Transverse relaxometry is a valid method and allows for the identification of a low iron burden. However, this technique is unfortunately prone to motion artifacts and provides inconsistent results in cases of heavy iron overload.
Finally, quantitative susceptibility mapping (QSM) is a notable procedure considered to be of significant interest for the future. The exact correlation between QSM and LIC, as measured by liver biopsy has yet to be established.
REFERENCES (43)
1.
Siah CW, Ombiga J, Adams LA, Trinder D, Olynyk JK. Normal iron metabolism and the pathophysiology of iron overload disorders. Clin Biochem Rev 2006; 27: 5-16.
2.
Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990; 74: 360-363. DOI: 10.1111/J.1365-2141.1990.TB02596.X.
3.
Gossuin Y, Muller RN, Gillis P. Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification. NMR Biomed 2004; 17: 427-432. DOI: 10.1002/NBM.903.
4.
Gandon Y, Olivié D, Guyader D, Aubé C, Oberti F, Sebille V, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363: 357-362. DOI: 10.1016/S0140-6736(04)15436-6.
5.
Martin DR. Liver-iron assay by MRI. Lancet 2004; 363: 341-342. DOI: 10.1016/S0140-6736(04)15471-8.
6.
Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54: 1185-1193. DOI: 10.1002/MRM.20697.
7.
Gossuin Y, Roch A, Muller RN, Gillis P, Lo Bue F. Anomalous nuclear magnetic relaxation of aqueous solutions of ferritin: an unprecedented first-order mechanism. Magn Reson Med 2002; 48: 959-964. DOI: 10.1002/MRM.10316.
8.
St Pierre TG, Clark PR, Chua-Anusorn W. Single spin-echo proton transverse relaxometry of iron-loaded liver. NMR Biomed 2004; 17: 446-458. DOI: 10.1002/NBM.905.
9.
Gattermann N, Muckenthaler MU, Kulozik AE, Metzgeroth G, Hastka J. The Evaluation of iron deficiency and iron overload. Dtsch Arztebl Int 2021; 118: 847-856. DOI: 10.3238/ARZTEBL.M2021.0290.
10.
Argyropoulou MI, Astrakas L. MRI evaluation of tissue iron burden in patients with beta-thalassaemia major. Pediatr Radiol 2007; 37: 1191-1200. DOI: 10.1007/S00247-007-0567-1.
11.
Castiella A, Alústiza JM, Emparanza JI, Zapata EM, Costero B, Díez MI. Liver iron concentration quantification by MRI: are recommended protocols accurate enough for clinical practice? Eur Radiol 2011; 21: 137-141. DOI: 10.1007/S00330-010-1899-Z.
12.
Henninger B, Alustiza J, Garbowski M, Gandon Y. Practical guide to quantification of hepatic iron with MRI. Eur Radiol 2024; 30: 383-393. DOI: 10.1007/S00330-019-06380-9.
13.
Hernando D, Levin YS, Sirlin CB, Reeder SB. Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 2014; 40: 1003-1021. DOI: 10.1002/JMRI.24584.
14.
Fenzi A, Bortolazzi M, Marzola P. Comparison between signal-to-noise ratio, liver-to-muscle ratio, and 1/T2 for the noninvasive assessment of liver iron content by MRI. J Magn Reson Imaging 2003; 17: 589-592. DOI: 10.1002/JMRI.10306.
15.
Ernst O, Sergent G, Bonvarlet P, Canva-Delcambre V, Paris JC, L’Herminé C. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol 1997; 168: 1205-1208. DOI: 10.2214/ajr.168.5.9129412.
16.
Rose C, Vandevenne P, Bourgeois E, Cambier N, Ernst O. Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. Eur J Haematol 2006; 77: 145-149. DOI: 10.1111/j.0902-4441.2006.t01-1-EJH2571.x.
17.
Queiroz-Andrade M, Blasbalg R, Ortega CD, Rodstein MAM, Baroni RH, Rocha MS, et al. MR imaging findings of iron overload. Radiographics 2009; 29: 1575-1589. DOI: 10.1148/RG.296095511.
18.
Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010; 18: 359-381. DOI: 10.1016/J.MRIC.2010.08.014.
19.
Alústiza Echeverría JM, Castiella A, Emparanza JI. Quantification of iron concentration in the liver by MRI. Insights Imaging 2012; 3: 173-180. DOI: 10.1007/s10334-012-0324-4.
20.
St. Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci 2005; 1054: 379-385. DOI: 10.1196/annals.1345.046.
21.
Jensen JH, Chandra R. Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Magn Reson Med 2002; 47: 1131-1138. DOI: 10.1002/MRM.10170.
22.
McRobbie DW, Moore EA, Graves MJ, Prince MR. Getting in tune: resonance and relaxation. In: MRI from picture to proton. Cambridge: Cambridge University Press; 2006. p. 137-166.
23.
Clark PR, Chua-Anusorn W, St. Pierre TG. Bi-exponential proton transverse relaxation rate (R2) image analysis using RF field intensity-weighted spin density projection: potential for R2 measurement of iron-loaded liver. Magn Reson Imaging 2003; 21: 519-530. DOI: 10.1016/S0730-725X(03)00080-8.
24.
Garbowski MW, Carpenter JP, Smith G, Roughton M, Alam MH, He T, et al. Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. J Cardiovasc Magn Reson 2014; 16: 40. DOI: 10.1186/1532-429X-16-40.
25.
Schwenzer NF, MacHann J, Haap MM, Martirosian P, Schraml C, Liebig G, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43: 854-860. DOI: 10.1097/RLI.0B013E3181862413.
26.
Jensen PD, Jensen FT, Christensen T, Eiskjær H, Baandrup U, Nielsen JL. Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood 2003; 101: 4632-4639. DOI: 10.1182/BLOOD-2002-09-2754.
27.
Wood JC, Tyszka JM, Carson S, Nelson MD, Coates TD. Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 2004; 103: 1934-1936. DOI: 10.1182/BLOOD-2003-06-1919.
28.
Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171-2179. DOI: 10.1053/EUHJ.2001.2822.
29.
Labranche R, Gilbert G, Cerny M, Vu KN, Soulières D, Olivié D, et al. Liver iron quantification with MR imaging: a primer for radiologists. Radiographics 2018; 38: 392–412. DOI: 10.1148/RG.2018170079.
30.
Sharma SD, Hernando D, Horng DE, Reeder SB. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 2015; 74: 673-683. DOI: 10.1002/MRM.25448.
31.
Kemp JM, Ghosh A, Dillman JR, Krishnasarma R, Manhard MK, Tipirneni-Sajja A, et al. Practical approach to quantitative liver and pancreas MRI in children. Pediatr Radiol 2025; 55: 36-57. DOI: 10.1007/S00247-024-06133-X.
32.
Mueske NM, Mittelman SD, Wren TAL, Gilsanz V, Orgel E. Myosteatosis in adolescents and young adults treated for acute lymphoblastic leukemia. Leuk Lymphoma 2019; 60: 3146-3153. DOI: 10.1080/10428194.2019.1623889.
33.
Ritz A, Lurz E, Berger M. Sarcopenia in children with solid organ tumors: an instrumental era. Cells 2022; 11: 1278. DOI: 10.3390/CELLS11081278.
34.
Hernando D, Kühn JP, Mensel B, Völzke H, Puls R, Hosten N, et al. R2* estimation using ‘in-phase’ echoes in the presence of fat: the effects of complex spectrum of fat. J Magn Reson Imaging 2013; 37: 717-726. DOI: 10.1002/JMRI.23851.
35.
Henninger B, Zoller H, Rauch S, Finkenstedt A, Schocke M, Jaschke W, et al. R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. Rofo 2015; 187: 472-479. DOI: 10.1055/S-0034-1399318.
36.
Wood JC. Use of magnetic resonance imaging to monitor iron overload. Hematol Oncol Clin North Am 2014; 28: 747-764. DOI: 10.1016/J.HOC.2014.04.002.
37.
Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009; 11: 4853-4855. DOI: 10.1182/BLOOD-2008-12-191643.
38.
Alústiza JM, Emparanza JI, Castiella A, Casado A, Garrido A, Aldazábal P, et al. Measurement of liver iron concentration by MRI is reproducible. Biomed Res Int 2015; 2015: 294024. DOI: 10.1155/2015/294024.
39.
Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465. DOI: 10.1182/BLOOD-2004-10-3982.
40.
St. Pierre TG, Clark PR, Chua-Anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861. DOI: 10.1182/BLOOD-2004-01-0177.
41.
Sharma SD, Fischer R, Schoennagel BP, Nielsen P, Kooijman H, Yamamura J, et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 2017; 78: 264-270. DOI: 10.1002/MRM.26358.
42.
Reeder SB, Yokoo T, França M, Hernando D, Alberich-Bayarri Á, Alústiza JM, et al. Quantification of liver iron overload with MRI: Review and guidelines from the ESGAR and SAR. Radiology 2023; 307: e221856. DOI: 10.1148/RADIOL.221856.
43.
Berdoukas V, Nord A, Carson S, Puliyel M, Hofstra T, Wood J, Coates TD. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol 2013; 88: E283-E285. DOI: 10.1002/ajh.23543.