NEURORADIOLOGY / REVIEW PAPER
Figure from article: Volumetric differences in...
 
KEYWORDS
TOPICS
ABSTRACT
Hypoxic-ischemic encephalopathy (HIE) remains a leading cause of neonatal brain injury, often resulting in long-term neurodevelopmental impairment. Therapeutic hypothermia (TH) is currently the only evidence-based treatment for HIE. This review summarizes volumetric magnetic resonance imaging (MRI) findings in children with HIE treated with TH. Across multiple studies, the hippocampus, thalamus, cerebellum, and basal ganglia consistently exhibit reduced volumes compared to healthy controls, though the statistical significance of these differences varies. Hippocampal volume reductions are observed in the neonatal period and later childhood, and are associated with poorer memory and cognitive outcomes. Thalamic and basal ganglia volumes are lower from the neonatal period through later childhood. Reduced thalamic volume is associated with impairments in cognitive and motor function. Cerebellar volume findings are inconsistent. Interpretation of volumetric differences remains challenging due to methodological heterogeneity across studies. Future studies are needed to validate volumetric biomarkers and establish normative data, facilitating the integration of volumetric MRI into early diagnostic and therapeutic stra­tegies for children with HIE.
REFERENCES (44)
1.
Russ JB, Simmons R, Glass HC. Neonatal encephalopathy: beyond hypoxic-ischemic encephalopathy. Neoreviews 2021; 22: e148-e162. DOI: 10.1542/neo.22-3-e148.
 
2.
Cornet MC, Kuzniewicz M, Scheffler A, Forquer H, Hamilton E, Newman TB, Wu YW. Perinatal hypoxic-ischemic encephalopathy: incidence over time within a modern US birth cohort. Pediatr Neurol 2023; 149: 145-150.
 
3.
Mathew JL, Kaur N, Dsouza JM. Therapeutic hypothermia in neonatal hypoxic encephalopathy: a systematic review and meta-analysis.J Glob Health 2022; 12: 04030. DOI: 10.7189/jogh.12.04030.
 
4.
Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxicischemic encephalopathy. Ann Neurol 2012; 72: 156-166.
 
5.
Abusaleem MY, Ebrahim MEE, Hamed NF, Eladwy MFM. A syste­matic review of the relationship between neonatal hypoxic-ischemic encephalopathy and long-term cognitive outcomes: where do we stand? Cureus 2024; 16: e68227. DOI: 10.7759/cureus.68227.
 
6.
Fischl B. FreeSurfer. Neuroimage 2012; 62: 774-781.
 
7.
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM.FSL. Neuroimage 2012; 62: 782-790.
 
8.
Ashburner J. SPM: a history. Neuroimage 2012; 62: 791-800.
 
9.
Kebaya LMN, Kapoor B, Mayorga PC, Meyerink P, Foglton K, Altamimi T, et al. Subcortical brain volumes in neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2023; 94: 1797-1803.
 
10.
Spencer APC, Lee-Kelland R, Brooks JCW, Jary S, Tonks J, Cowan FM, et al. Brain volumes and functional outcomes in children without cerebral palsy after therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy. Dev Med Child Neurol 2023; 65: 367-375.
 
11.
Pfister KM, Stoyell SM, Miller ZR, Hunt RH, Zorn EP, Thomas KM. Reduced hippocampal volumes in children with history of hypoxic ischemic encephalopathy after therapeutic hypothermia. Children (Basel) 2023; 10: 1005. DOI: 10.3390/children10061005.
 
12.
Im SA, Tomita E, Oh MY, Kim SY, Kang HM, Youn YA. Volumetric changes in brain MRI of infants with hypoxic-ischemic encephalo­pathy and abnormal neurodevelopment who underwent therapeutic hypothermia. Brain Res 2024; 1825: 148703. DOI: 10.1016/j.brainres. 2023.148703.
 
13.
Annink KV, de Vries LS, Groenendaal F, Eijsermans RMJC, Mock-ing M, van Schooneveld MMJ, et al. Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy. Sci Rep 2021; 11: 5017. DOI: 10.1038/s41598-021-83982-8.
 
14.
Wu CQ, Cowan FM, Jary S, Thoresen M, Chakkarapani E, Spen-cer APC. Cerebellar growth, volume and diffusivity in children cooled for neonatal encephalopathy without cerebral palsy. Sci Rep 2023; 13: 14869. DOI: 10.1038/s41598-023-41838-3.
 
15.
Anand KS, Dhikav V. Hippocampus in health and disease: an overview. Ann Indian Acad Neurol 2012; 15: 239-246.
 
16.
Lalonde CC, Mielke JG. Selective vulnerability of hippocampal sub-fields to oxygen–glucose deprivation is a function of animal age. Brain Res 2014; 1543: 271-279.
 
17.
Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 1991; 40: 599-636.
 
18.
Einenkel AM, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomecha­nisms and should more attention be paid to the CA3 region in future studies? J Neurosci Res 2024; 102: e25276. DOI: 10.1002/jnr.25276.
 
19.
Annink KV, de Vries LS, Groenendaal F, van den Heuvel MP, van Haren NEM, Swaab H, et al. The long-term effect of perinatal asphyxia on hippocampal volumes. Pediatr Res 2019; 85: 43-49.
 
20.
Kasdorf E, Engel M, Heier L, Perlman JM. Therapeutic hypothermia in neonates and selective hippocampal injury on diffusion-weighted magnetic resonance imaging. Pediatr Neurol 2014; 51: 104-108.
 
21.
Frodl T, Schaub A, Banac S, Charypar M, Jäger M, Kümmler P, et al. Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci JPN 2006; 31: 316-323.
 
22.
Fama R, Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev 2015; 54: 29-37.
 
23.
Marcuse LV, Langan M, Hof PR, Panov F, Saez I, Jimenez-Shahed J, et al. The thalamus: structure, function, and neurotherapeutics. Neurotherapeutics 2025; 22: e00550. DOI: 10.1016/j.neurot.2025.e00550.
 
24.
Heinz ER, Provenzale JM. Imaging findings in neonatal hypoxia: a practical review. AJR Am J Roentgenol 2009; 192: 41-47.
 
25.
Chen L, Wang Y, Wu Z, Shan Y, Li T, Hung SC, et al. Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants. Nat Commun 2023; 14: 3727. DOI: 10.1038/s41467-023-38974-9.
 
26.
Mastrangelo S, Peruzzi L, Guido A, Iuvone L, Attinà G, Romano A, et al. The Role of the cerebellum in advanced cognitive processes in children. Biomedicines 2024; 12: 1707. DOI: 10.3390/biomedicines12081707.
 
27.
Melka N, Pszczolinska A, Klejbor I, Moryś J. The cerebellum: the ‘little’ brain and its big role. Folia Morphol 2024; 83: 497-508.
 
28.
Sanches EF, van de Looij Y, Toulotte A, Sizonenko SV, Lei H. Mild neonatal brain hypoxia-ischemia in very immature rats causes long-term behavioral and cerebellar abnormalities at adulthood. Front Physiol 2019; 10: 634. DOI: 10.3389/fphys.2019.00634.
 
29.
Kwan S, Boudes E, Gilbert G, Saint-Martin C, Albrecht S, Shevell M, Wintermark P. Injury to the cerebellum in term asphyxiated newborns treated with hypothermia. AJNR Am J Neuroradiol 2015; 36: 1542-1549.
 
30.
Lin CY, Chen CH, Tom SE, Kuo SH. Cerebellar volume is associated with cognitive decline in mild cognitive impairment: results from ADNI. Cerebellum 2020; 19: 217-225.
 
31.
Parmar K, Fonov VS, Naegelin Y, Amann M, Wuerfel J, Collins DL, et al.Regional cerebellar volume loss predicts future disability in multiple sclerosis patients. Cerebellum 2022; 21: 632-646.
 
32.
Watkins KE, Jenkinson N. The anatomy of the basal ganglia. In: Hickok G, Small SL, editors. Neurobiology of language. San Diego: Academic Press; 2016, p. 85-94.
 
33.
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2: a009621. DOI: 10.1101/cshperspect.a009621.
 
34.
Foerde K, Shohamy D. The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol Learn Mem 2011; 96: 624-636.
 
35.
Bach AM, Fang AY, Bonifacio S, Rogers EE, Scheffler A, Partridge JC, et al. Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy. J Pediatr 2021; 238: 94-101.e1. DOI: 10.1016/j.jpeds.2021.07.003.
 
36.
Ji X, Zhou Y, Gao Q, He H, Wu Z, Feng B, et al. Functional reconstruction of the basal ganglia neural circuit by human striatal neurons in hypoxic-ischaemic injured brain. Brain 2023; 146: 612-628.
 
37.
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell 2014; 156: 1072-1083.
 
38.
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: impact on plasticity following brain injury. Brain Circ 2019; 5: 169-178.
 
39.
Imai K, de Vries LS, Alderliesten T, Wagenaar N, van der Aa NE, Lequin MH, et al. MRI changes in the thalamus and basal ganglia of full-term neonates with perinatal asphyxia. Neonatology 2018; 114: 253-260.
 
40.
Rutherford M, Malamateniou C, McGuinness A, Allsop J, Biarge MM, Counsell S. Magnetic resonance imaging in hypoxic-ischaemic encephalopathy. Early Hum Dev 2010; 86: 351-360.
 
41.
Chu R, Hurwitz S, Tauhid S, Bakshi R. Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability. BMC Neurol 2017; 17: 172. DOI: 10.1186/s12883-017-0949-4.
 
42.
Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177-192.
 
43.
Heinen R, Bouvy WH, Mendrik AM, Viergever MA, Biessels GJ, de Bresser J. Robustness of automated methods for brain volume measurements across different MRI field strengths. PLoS One 2016; 11: e0165719. DOI: 10.1371/journal.pone.0165719.
 
44.
Perlaki G, Horvath R, Nagy SA, Bogner P, Doczi T, Janszky J, Orsi G.Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation. Sci Rep 2017; 7: 2418. DOI: 10.1038/s41598-017-02584-5.
 
ISSN:1899-0967
Journals System - logo
Scroll to top